摘要
Rice yield is an important and complex agronomic trait controlled by multiple genes.In recent decades,dozens of yield-associated genes in rice have been cloned,many of which can increase production in the form of loss or degeneration of function.However,mutations occurring randomly under natural conditions have provided very limited genetic resources for yield increases.In this study,potentially yield-increasing alleles of two genes closely associated with yield were edited artificially.The recently developed CRISPR/Cas9system was used to edit two yield genes:Grain number 1a(Gn1a)and DENSE AND ERECT PANICLE1(DEP1).Several mutants were identified by a target sequence analysis.Phenotypic analysis confirmed one mutant allele of Gn1a and three of DEP1 conferring yield superior to that conferred by other natural high-yield alleles.Our results demonstrate that favorable alleles of the Gnla and DEP1 genes,which are considered key factors in rice yield increases,could be developed by artificial mutagenesis using genome editing technology.
Rice yield is an important and complex agronomic trait controlled by multiple genes.In recent decades,dozens of yield-associated genes in rice have been cloned,many of which can increase production in the form of loss or degeneration of function.However,mutations occurring randomly under natural conditions have provided very limited genetic resources for yield increases.In this study,potentially yield-increasing alleles of two genes closely associated with yield were edited artificially.The recently developed CRISPR/Cas9system was used to edit two yield genes:Grain number 1a(Gn1a)and DENSE AND ERECT PANICLE1(DEP1).Several mutants were identified by a target sequence analysis.Phenotypic analysis confirmed one mutant allele of Gn1a and three of DEP1 conferring yield superior to that conferred by other natural high-yield alleles.Our results demonstrate that favorable alleles of the Gnla and DEP1 genes,which are considered key factors in rice yield increases,could be developed by artificial mutagenesis using genome editing technology.
基金
the Department of Sciences and Technology of Yunnan Province (2016BB001)
the National Basic Research Program of China (2013CB835200)
a Key Grant of Yunnan Provincial Science and Technology Department (2013GA004)