Paper mulberry(Broussonetia papyrifera)is a well-known woody tree historically used for Cai Lun papermaking,one of the four great inventions of ancient China.More recently,Paper mulberry has also been used as forage t...Paper mulberry(Broussonetia papyrifera)is a well-known woody tree historically used for Cai Lun papermaking,one of the four great inventions of ancient China.More recently,Paper mulberry has also been used as forage to address the shortage of feedstuff because of its digestible crude fiber and high protein contents.In this study,we obtained a chromosome-scale genome assembly for Paper mulberry using integrated approaches,including Illumina and PacBio sequencing platform as well as Hi-C,optical,and genetic maps.The assembled Paper mulberry genome consists of 386.83 Mb,which is close to the estimated size,and 99.25%(383.93 Mb)of the assembly was assigned to 13 pseudochromosomes.Comparative genomic analysis revealed the expansion and contraction in the flavonoid and lignin biosynthetic gene families,respectively,accounting for the enhanced flavonoid and decreased lignin biosynthesis in Paper mulberry.Moreover,the increased ratio of syringyl-lignin to guaiacyl-lignin in Paper mulberry underscores its suitability for use in medicine,forage,papermaking,and barkcloth making.We also identified the rootassociated microbiota of Paper mulberry and found that Pseudomonas and Rhizobia were enriched in its roots and may provide the source of nitrogen for its stems and leaves via symbiotic nitrogen fixation.Collectively,these results suggest that Paper mulberry might have undergone adaptive evolution and recruited nitrogen-fixing microbes to promote growth by enhancing flavonoid production and altering lignin monomer composition.Our study provides significant insights into genetic basis of the usefulness of Paper mulberry in papermaking and barkcloth making,and as forage.These insights will facilitate further domestication and selection as well as industrial utilization of Paper mulberry worldwide.展开更多
The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 3...The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s.展开更多
Background:The conversion of adenosine(A)to inosine(I)through deamination is the prevailing form of RNA editing,impacting numerous nuclear and cytoplasmic transcripts across various eukaryotic species.Millions of high...Background:The conversion of adenosine(A)to inosine(I)through deamination is the prevailing form of RNA editing,impacting numerous nuclear and cytoplasmic transcripts across various eukaryotic species.Millions of high-confidence RNA editing sites have been identified and integrated into various RNA databases,providing a convenient platform for the rapid identification of key drivers of cancer and potential therapeutic targets.However,the available database for integration of RNA editing in hematopoietic cells and hematopoietic malignancies is still lacking.Methods:We downloaded RNA sequencing(RNA-seq)data of 29 leukemia patients and 19 healthy donors from National Center for Biotechnology Information(NCBI)Gene Expression Omnibus(GEO)database,and RNA-seq data of 12 mouse hematopoietic cell populations obtained from our previous research were also used.We performed sequence alignment,identified RNA editing sites,and obtained characteristic editing sites related to normal hematopoietic development and abnormal editing sites associated with hematologic diseases.Results:We established a new database,"REDH",represents RNA editome in hematopoietic differentiation and malignancy.REDH is a curated database of associations between RNA editome and hematopoiesis.REDH integrates 30,796 editing sites from 12 murine adult hematopoietic cell populations and systematically characterizes more than 400,000 edited events in malignant hematopoietic samples from 48 cohorts(human).Through the Differentiation,Disease,Enrichment,and knowledge modules,each A-to-I editing site is systematically integrated,including its distribution throughout the genome,its clinical information(human sample),and functional editing sites under physiological and pathological conditions.Furthermore,REDH compares the similarities and differences of editing sites between different hematologic malignancies and healthy control.Conclusions:REDH is accessible at http://www.redhdatabase.com/.This user-friendly database would aid in understanding the mechanisms of RN展开更多
The cAMP-dependent protein kinase A(PKA)signaling pathway has long been considered critical for long-term memory(LTM)formation.Previous studies have mostly focused on the role of PKA signaling in LTM induction by mult...The cAMP-dependent protein kinase A(PKA)signaling pathway has long been considered critical for long-term memory(LTM)formation.Previous studies have mostly focused on the role of PKA signaling in LTM induction by multiple spaced conditioning with less attention to LTM induction by a single conditioning.Here,we conducted behavioral-pharmacology,enzyme immunoassay and RNA interference experiments to study the role of the PKA signaling pathway in LTM formation in the agricultural pest Bactrocera dorsalis,which has a strong memory capacity allowing it to form a two-day memory even from a single conditioning trial.We found that either blocking or activating PKA prior to conditioning pretreatment affected multiple spaced LTM,and conversely,they did not affect LTM formed by single conditioning.This was further confirmed by enzyme-linked immunosorbent assay(ELISA)and silencing of the protein kinase regulatory subunit 2 and catalytic subunit 1.Taken together,these results suggest that activating PKA during memory acquisition helps to induce the LTM formed by multiple spaced conditioning but not by a single conditioning.Our findings challenge the conserved role of PKA signaling in LTM,which provides a basis for the greater diversity of molecular mechanisms underlying LTM formation across species,as well as possible functional and evolutionary implications.展开更多
基金the National Natural Science Foundation of China(31770360,31870247)the Poverty Relief Project of the Chinese Academy of Sciences(KFJ-FP-24)the Huimin Technology Demonstration Project of the Natio nal Modem Agricultural Science and Technology Achievements City(Z151100001015008).
文摘Paper mulberry(Broussonetia papyrifera)is a well-known woody tree historically used for Cai Lun papermaking,one of the four great inventions of ancient China.More recently,Paper mulberry has also been used as forage to address the shortage of feedstuff because of its digestible crude fiber and high protein contents.In this study,we obtained a chromosome-scale genome assembly for Paper mulberry using integrated approaches,including Illumina and PacBio sequencing platform as well as Hi-C,optical,and genetic maps.The assembled Paper mulberry genome consists of 386.83 Mb,which is close to the estimated size,and 99.25%(383.93 Mb)of the assembly was assigned to 13 pseudochromosomes.Comparative genomic analysis revealed the expansion and contraction in the flavonoid and lignin biosynthetic gene families,respectively,accounting for the enhanced flavonoid and decreased lignin biosynthesis in Paper mulberry.Moreover,the increased ratio of syringyl-lignin to guaiacyl-lignin in Paper mulberry underscores its suitability for use in medicine,forage,papermaking,and barkcloth making.We also identified the rootassociated microbiota of Paper mulberry and found that Pseudomonas and Rhizobia were enriched in its roots and may provide the source of nitrogen for its stems and leaves via symbiotic nitrogen fixation.Collectively,these results suggest that Paper mulberry might have undergone adaptive evolution and recruited nitrogen-fixing microbes to promote growth by enhancing flavonoid production and altering lignin monomer composition.Our study provides significant insights into genetic basis of the usefulness of Paper mulberry in papermaking and barkcloth making,and as forage.These insights will facilitate further domestication and selection as well as industrial utilization of Paper mulberry worldwide.
基金support from diverse funding sources,including the National Key Program for S&T Research and Development of the Ministry of Science and Technology(MOST),Yifang Wang's Science Studio of the Ten Thousand Talents Project,the CAS Key Foreign Cooperation Grant,the National Natural Science Foundation of China(NSFC)Beijing Municipal Science&Technology Commission,the CAS Focused Science Grant,the IHEP Innovation Grant,the CAS Lead Special Training Programthe CAS Center for Excellence in Particle Physics,the CAS International Partnership Program,and the CAS/SAFEA International Partnership Program for Creative Research Teams.
文摘The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s.
基金supported by grants from the National Key Research and Development Program of China(Nos.2022YFA1106300,2019YFA0802603,2019YFA0801800,2019YFA0111700,and 2021YFA0805703)the National Natural Science Foundation of China(Nos.92268205,82122005,81970154,81970101,82270192)+1 种基金CAMS Innovation Fund for Medical Sciences(No.2021-I2M-1-019)Haihe Laboratory of Cell Ecosystem Innovation Fund(No.22HHXBSS00027)
文摘Background:The conversion of adenosine(A)to inosine(I)through deamination is the prevailing form of RNA editing,impacting numerous nuclear and cytoplasmic transcripts across various eukaryotic species.Millions of high-confidence RNA editing sites have been identified and integrated into various RNA databases,providing a convenient platform for the rapid identification of key drivers of cancer and potential therapeutic targets.However,the available database for integration of RNA editing in hematopoietic cells and hematopoietic malignancies is still lacking.Methods:We downloaded RNA sequencing(RNA-seq)data of 29 leukemia patients and 19 healthy donors from National Center for Biotechnology Information(NCBI)Gene Expression Omnibus(GEO)database,and RNA-seq data of 12 mouse hematopoietic cell populations obtained from our previous research were also used.We performed sequence alignment,identified RNA editing sites,and obtained characteristic editing sites related to normal hematopoietic development and abnormal editing sites associated with hematologic diseases.Results:We established a new database,"REDH",represents RNA editome in hematopoietic differentiation and malignancy.REDH is a curated database of associations between RNA editome and hematopoiesis.REDH integrates 30,796 editing sites from 12 murine adult hematopoietic cell populations and systematically characterizes more than 400,000 edited events in malignant hematopoietic samples from 48 cohorts(human).Through the Differentiation,Disease,Enrichment,and knowledge modules,each A-to-I editing site is systematically integrated,including its distribution throughout the genome,its clinical information(human sample),and functional editing sites under physiological and pathological conditions.Furthermore,REDH compares the similarities and differences of editing sites between different hematologic malignancies and healthy control.Conclusions:REDH is accessible at http://www.redhdatabase.com/.This user-friendly database would aid in understanding the mechanisms of RN
基金funded by the National Natural Science Foundation of China(32072486 and 31971424)。
文摘The cAMP-dependent protein kinase A(PKA)signaling pathway has long been considered critical for long-term memory(LTM)formation.Previous studies have mostly focused on the role of PKA signaling in LTM induction by multiple spaced conditioning with less attention to LTM induction by a single conditioning.Here,we conducted behavioral-pharmacology,enzyme immunoassay and RNA interference experiments to study the role of the PKA signaling pathway in LTM formation in the agricultural pest Bactrocera dorsalis,which has a strong memory capacity allowing it to form a two-day memory even from a single conditioning trial.We found that either blocking or activating PKA prior to conditioning pretreatment affected multiple spaced LTM,and conversely,they did not affect LTM formed by single conditioning.This was further confirmed by enzyme-linked immunosorbent assay(ELISA)and silencing of the protein kinase regulatory subunit 2 and catalytic subunit 1.Taken together,these results suggest that activating PKA during memory acquisition helps to induce the LTM formed by multiple spaced conditioning but not by a single conditioning.Our findings challenge the conserved role of PKA signaling in LTM,which provides a basis for the greater diversity of molecular mechanisms underlying LTM formation across species,as well as possible functional and evolutionary implications.