In this work, the influences of alumina addition on cristobalite crystallization and properties of injec- tion molded silica-based ceramic cores were investigated. X-ray diffraction (XRD) was used to characterize ph...In this work, the influences of alumina addition on cristobalite crystallization and properties of injec- tion molded silica-based ceramic cores were investigated. X-ray diffraction (XRD) was used to characterize phase transformations in the samples, and the XRD result indicated that the addition of alumina pro- moted crystallization of fused silica during sintering at 1180-1220 ℃ and thus increases the amount of cristobalite. The increased amount of cristobalite as well as alumina addition led to much more thermal dilation due to their higher coefficients of thermal expansion than that of fused silica. The flexural strengths at room temperature and 1500 ~C were tested, and it was shown that alumina addition could not affect room temperature strength, but decreased the flexural strength at 1500 ℃. In addition, deflection resis- tance during heating to high temperatures was investigated, and the result indicated that alumina addition speeded up high temperature softening of the samples. XRD and scanning electron microscopy equipped with energy dispersive spectrometry (SEMJEDS) analysis suggested that this softening behavior was related with viscous flow sintering which could be accelerated by the reaction of alumina and silica with a product of mullite.展开更多
Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the effici...Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.展开更多
In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after...In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.展开更多
Cold-drawn pearlitic steel wire is irreplaceably used in industry owing to its outstanding mechanical property which is dominated by the cementite/ferrite(Fe_(3)C/Fe) interfaces in the material. However, the fine stru...Cold-drawn pearlitic steel wire is irreplaceably used in industry owing to its outstanding mechanical property which is dominated by the cementite/ferrite(Fe_(3)C/Fe) interfaces in the material. However, the fine structures of the Fe3C/Fe interfaces in the deformed wires are less known to date. In this work, transmission electron microscopic investigation was performed on the atomic structures of the interfaces with the Isaichev orientation relationship(OR) in the wires with progressive deformation strains. In addition to the effect of the dislocation/interface interactions, this work revealed that the deformation-induced partial decomposition of cementite plays an important role in the interface reconstruction during deformation. The interfacial carbon vacancies generated by cementite decomposition and particularly, the amorphization of cementite layers in the sample with ε > 1 could effectively annihilated the interfacial dislocations and consequently relaxed the interfacial stress. The correlations between the interface structure changes and the mechanical properties of the wires were discussed.展开更多
A Re-containing Ni-base single crystal superalloy was used to investigate the elementary processes associated with stress-rupture behavior at different temperatures where theγʹrafting occurs.At 900°C,the rupture...A Re-containing Ni-base single crystal superalloy was used to investigate the elementary processes associated with stress-rupture behavior at different temperatures where theγʹrafting occurs.At 900°C,the rupture behavior is mainly determined by the multiplication of dislocations within the wideningγchannels,which is closely linked with the propagation of microcracks along the inherentγ/γʹinterfaces.The rapid formation of lamellaγ/γʹraft structure,along with the developed-well interfacial dislocation networks,and its elastic instability are primarily responsible for the rupture behavior at 1100°C.There is a clear curvature tendency in the Larson-Miller plot of stress-rupture lifetime in relation to stress at high temperatures.It indicates that the influence extent ofγʹrafting on stress-rupture behavior is sensitive to the acting conditions of temperature and stress.展开更多
Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-fiel...Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-field scanning transmission electron microscopy(HAADFSTEM). β’ phase was precipitated only in the Mg matrix but not in LPSO structures after aging at 200 °C for 24 h. LPSO structure containing stacking defects transforms into the β’-long phase during EB irradiation, which plays a key role in accelerating solute atoms’ diffusion. New complex β’(LPSO) structures formed in the alloy after EB irradiation, such as β’(12 H) structure with an orthorhombic lattice(Mg;Y, Cmcm,a = 2 _(a0)= 0.642 nm, b=4√3_(a0), c = 6 _(c0)= 3.12 nm).展开更多
Both surface and internal microstructures of a second-generation Ni-based single crystal(SX) superalloy were studied after creep and rejuvenation heat treatment(RHT).It is indicated that the microstructures,such as th...Both surface and internal microstructures of a second-generation Ni-based single crystal(SX) superalloy were studied after creep and rejuvenation heat treatment(RHT).It is indicated that the microstructures,such as the dislocation network,the γ phase and the γ' phase,can be recovered to those after the standard heat treatment(SHT).It is found that RHT affected zone(RAZ) formed at the surface is composed of theγ'-free layer,the transition layer and the recrystallization(RX),which are less than 20 μm in depth totally.Such depth of the RAZ doesn't affect the properties of the superalloy.The morphology of γ' phase at the RAZ is related to the composition of the elements.The average creep life after RHT is close to the average life after SHT.It is concluded that RHT could effectively repair SX parts and increase the total life of the sample after a damage by creep.展开更多
Ceramic cores with good chemical stability and moderate mechanical properties near casting temperatures of 1550℃ for example are used for the manufacturing of internal structures of hollow blades,requiring complex st...Ceramic cores with good chemical stability and moderate mechanical properties near casting temperatures of 1550℃ for example are used for the manufacturing of internal structures of hollow blades,requiring complex structures and high precision[1–3].However,traditional preparation method based on investment casting is tedious,requiring not only long production cycles but also high cost[4].展开更多
The oxidation behaviour of a fourth-generation single-crystal superalloy without coating and with two types of MCrAlY coatings at 1140℃was studied.The results showed that both coatings greatly improved the oxidation ...The oxidation behaviour of a fourth-generation single-crystal superalloy without coating and with two types of MCrAlY coatings at 1140℃was studied.The results showed that both coatings greatly improved the oxidation resistance of the superalloy,and the addition of Hf further improved the oxidation resistance by pinning the oxide layer into the coating.Before and after oxidation,obvious Cr and Al interdiffusion was detected.Inward Cr diffusion induces the precipitation of a topologically close-packed phase,while the diffusion of Al affects the structure of theγ/γ’phase,the solubility of refractory elements,and the formation of an interdiffusion zone.展开更多
he co m pound m aterial of n m size particles Ge O2 Si O2 w as synthesied through hydrolysis of Si( O C2 H4) and Ge Cl4 . A heat treatm ent w as carried out for the sa m ples at 100 ~1200 ℃in air . Its optical prope...he co m pound m aterial of n m size particles Ge O2 Si O2 w as synthesied through hydrolysis of Si( O C2 H4) and Ge Cl4 . A heat treatm ent w as carried out for the sa m ples at 100 ~1200 ℃in air . Its optical property w as deter mined by U V Vis spectur m . We have found that theabsorption edge of spectru m shifted progressively to longer w avelengths . The quantu m size ef fect of nanocrystals appears because crystals gro w and energy of optical band gap reduces d ueto the influence of te m perature . By the analysis of X ray diffraction w e have observed theprocess in w hich the structure of particles changed fro m disorder into order .展开更多
In this paper, a finite element model was developed for a turbine blade with thermal barrier coatings to investigate its failure behavior under cyclic thermal loading. Based on temperature and stress fields obtained f...In this paper, a finite element model was developed for a turbine blade with thermal barrier coatings to investigate its failure behavior under cyclic thermal loading. Based on temperature and stress fields obtained from finite element simulations, dangerous regions in ceramic coating were determined in terms of the maximum principal stress criterion. The results show that damage preferentially occurs in the chamfer and rabbet of a turbine blade with thermal barrier coatings and its thermal fatigue life decreases with the increase of thermal stress induced by high service temperature.展开更多
To study the temperature distribution and thermal-stress field in different service stages, a two-dimensional model of a turbine blade with thermal barrier coatings is developed, in which the conjugate heat transfer a...To study the temperature distribution and thermal-stress field in different service stages, a two-dimensional model of a turbine blade with thermal barrier coatings is developed, in which the conjugate heat transfer analysis and the decoupled thermal-stress calculation method are adopted. Based on the simulation results, it is found that a non-uniform distribution of temperature appears in different positions of the blade surface, which has directly impacted on stress field. The maximum temperature with a value of 1030 ℃ occurs at the leading edge. During the steady stage, the maximum stress of thermally grown oxide (TGO) appears in the middle of the suction side, reaching 3.75 GPa. At the end stage of cooling, the maximum compressive stress of TGO with a value of-3.5 GPa occurs at the leading edge. Thus, it can be predicted that during the steady stage the dangerous regions may locate at the suction side, while the leadine edge mav be more Drone to failure on cooling.展开更多
Nanolaminated Ti3AlC2honeycomb monolith with parallel and uniform holes has been prepared through a facile extrusion route by using Ti3AlC2powder as the main raw material.The fabricated honeycomb monolith has high com...Nanolaminated Ti3AlC2honeycomb monolith with parallel and uniform holes has been prepared through a facile extrusion route by using Ti3AlC2powder as the main raw material.The fabricated honeycomb monolith has high compressive strength of 133 ± 11 and 59 ± 9 MPa,along and perpendicular to the extrusion direction,respectively.It also has good electrical conductivity,and excellent match of thermal expansion coefficient with the washcoat material of γ-AI2O3.These combined properties endow the honeycomb monolith a promising candidate as catalysis substrate for cleaning vehicle exhaust.展开更多
Nickel-based single-crystal superalloys are widely used in the manufacture of aeroengine turbine vanes for their excellent high-temperature performance. Low-angle grain boundaries (LAGBs) will be generated inevitably ...Nickel-based single-crystal superalloys are widely used in the manufacture of aeroengine turbine vanes for their excellent high-temperature performance. Low-angle grain boundaries (LAGBs) will be generated inevitably during their manufacture, which are often characterized by grain boundary misorientation (GBM) and will weaken the mechanical properties of superalloys. However, the relationship between GBM and the fatigue properties of superalloys at elevated temperatures has seldom been investigated due to the difficulty in the sample preparation and experiment process. Based on six kinds of bicrystals with different tilt LAGBs made by a second-generation single-crystal superalloy, the effects of misorientation on the grain boundary microstructure and fatigue properties (980 °C) of superalloys were studied systematically in this work. It is found that, with the increase of GBM, the GB precipitates combined with the cast micropores increase monotonically, accordingly both the fatigue life and fatigue strength decrease successively. Fatigue fracture observations show that the cracks of all the bicrystals initiated from the cast micropores at GBs, and then propagated along the GBs. Therefore, the coupling effect of cast micropores and GBM on the fatigue damage mechanisms of the bicrystals are evaluated according to their hindering degrees on the piled-up dislocations. Combining with a hysteresis energy model, a quantitative fatigue strength prediction model of superalloys is established and is well verified by abundant experimental data. This study could provide guidance for fatigue performance prediction and structural design of superalloys.展开更多
Bismuth(Bi),as an impurity element in copper and copper-based alloys,usually has a strong tendency of grain boundary(GB)segregation,which depends on the GB characters.However,the influence of such a segregation on the...Bismuth(Bi),as an impurity element in copper and copper-based alloys,usually has a strong tendency of grain boundary(GB)segregation,which depends on the GB characters.However,the influence of such a segregation on the properties of ultrahigh-purity copper has been rarely reported and the exact structural arrangements of Bi atoms at different GBs remain largely unclear.In this study,we investigated the influ-ence of trace amounts of Bi(50-300 wt ppm)on the ductility of an ultrahigh-purity copper(99.99999%)in the range of room temperature to 900°C.The tensile results show that the addition of Bi seriously damages the ductility of the ultrahigh-purity copper at temperatures of 450-900°C,which is due to the GB segregation of Bi.On this basis,such a segregation behavior at different types of GBs,including high and low angle GBs(HAGBs/LAGBs),and twin boundaries(TBs),via the scanning electron microscope-electron backscattered diffraction(SEM-EBSD)and aberration-corrected scanning transmission electron microscope(AC-STEM)investigations,combined with the first-principles calculations were systematically studied.The atomistic characterizations demonstrate an anisotropic Bi segregation,where severe enrich-ment of Bi atoms typically occurs at the HAGBs,while the absence of Bi adsorption prevails at LAGBs or TBs.In particular,the segregated Bi at random HAGBs exhibited the directional bilayer adsorption,while the special symmetrical7 HAGB presented a unique Bi-rich cluster superstructure.Our findings pro-vide a comprehensive experimental and computational understanding on the atomic-scale segregation of impurities in metallic materials.展开更多
By using the first-principles calculation, we studied the mechanisms of point defects in Y4AI209 (YAM), a promising ternary oxide with excellent optical and thermal properties. It is found that the predominant nativ...By using the first-principles calculation, we studied the mechanisms of point defects in Y4AI209 (YAM), a promising ternary oxide with excellent optical and thermal properties. It is found that the predominant native defect species is closely dependent on the chemical potentials of each constituent. In the case of O-rich condition, the oxygen interstitial has the very low defect formation energy, followed by the anti-site defects and AI vacancy; in the case of AI-rich condition, the oxygen vacancy yields the lowest defect formation energy, followed by the anti-site defects and AI interstitial. The present result shows that in all the possible chemical potential ranges, anti-site defects have relatively low defect formation energy and might exist in high concentration in YAM. Furthermore, AIy anti-site has relatively lower defect formation energy than the YAt anti- site throughout. The behaviors of defect complexes under non-stoichiometric condition, such as the AI203 or Y203 excess, are also investigated. The results provide helpful guide to optimize the experimental synthesizing of YAM.展开更多
Creep and stress relaxation behavior, the elastic modulus and fracture toughness of machinable Ti3SiC2 at various temperatures from 20 to 1250℃ were investigated by means of three-point bending tests. The experiments...Creep and stress relaxation behavior, the elastic modulus and fracture toughness of machinable Ti3SiC2 at various temperatures from 20 to 1250℃ were investigated by means of three-point bending tests. The experiments were performed respectively at: (i) fixed stress and changed temperatures, and (ii) fixed temperature and changed stresses. A creep resistance parameter that represents the probability of creep deformation in a given condition was defined as a function of both applied stress and the threshold stress, varying in a range from 0 to 1. Elastic modulus at high temperatures was measured through comparing relative slopes of loading curves in cyclic loading curve. The fracture toughness measured by SENB method showed a stable value in the range of 25-1000℃, but over 1000℃, it declined abruptly from -6.7MPa·m1/2 to -2.0MPa·m1/2 at 1200℃.展开更多
We consider the design of an effective and reliable adaptive finite element method(AFEM)for the nonlinear Poisson-Boltzmann equation(PBE).We first examine the two-term regularization technique for the continuous probl...We consider the design of an effective and reliable adaptive finite element method(AFEM)for the nonlinear Poisson-Boltzmann equation(PBE).We first examine the two-term regularization technique for the continuous problem recently proposed by Chen,Holst and Xu based on the removal of the singular electrostatic potential inside biomolecules;this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation,the first provably convergent discretization and also allowed for the development of a provably convergent AFEM.However,in practical implementation,this two-term regularization exhibits numerical instability.Therefore,we examine a variation of this regularization technique which can be shown to be less susceptible to such instability.We establish a priori estimates and other basic results for the continuous regularized problem,as well as for Galerkin finite element approximations.We show that the new approach produces regularized continuous and discrete problemswith the samemathematical advantages of the original regularization.We then design an AFEM scheme for the new regularized problem and show that the resulting AFEM scheme is accurate and reliable,by proving a contraction result for the error.This result,which is one of the first results of this type for nonlinear elliptic problems,is based on using continuous and discrete a priori L¥estimates.To provide a high-quality geometric model as input to the AFEM algorithm,we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures,based on the intrinsic local structure tensor of the molecular surface.All of the algorithms described in the article are implemented in the Finite Element Toolkit(FETK),developed and maintained at UCSD.The stability advantages of the new regularization scheme are demonstrated with FETK through comparisons with the original regularization approach for a model problem.The conve展开更多
文摘In this work, the influences of alumina addition on cristobalite crystallization and properties of injec- tion molded silica-based ceramic cores were investigated. X-ray diffraction (XRD) was used to characterize phase transformations in the samples, and the XRD result indicated that the addition of alumina pro- moted crystallization of fused silica during sintering at 1180-1220 ℃ and thus increases the amount of cristobalite. The increased amount of cristobalite as well as alumina addition led to much more thermal dilation due to their higher coefficients of thermal expansion than that of fused silica. The flexural strengths at room temperature and 1500 ~C were tested, and it was shown that alumina addition could not affect room temperature strength, but decreased the flexural strength at 1500 ℃. In addition, deflection resis- tance during heating to high temperatures was investigated, and the result indicated that alumina addition speeded up high temperature softening of the samples. XRD and scanning electron microscopy equipped with energy dispersive spectrometry (SEMJEDS) analysis suggested that this softening behavior was related with viscous flow sintering which could be accelerated by the reaction of alumina and silica with a product of mullite.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant 51490662)the Funds for Distinguished Young Scientists of Hunan Province (Grant 14JJ1016)+1 种基金the State Key Program of the National Science Foundation of China (11232004)the Heavy-duty Tractor Intelligent Manufacturing Technology Research and System Development (Grant 2016YFD0701105)
文摘Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.51871222,52171021,and 51801214)Liaoning Provincial Natural Science Foundation(2019-MS-335)the research fund of SYNL。
文摘In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.
基金financially supported by the National Natural Science Foundation of China (No. 51501195)the Fund of SYNL。
文摘Cold-drawn pearlitic steel wire is irreplaceably used in industry owing to its outstanding mechanical property which is dominated by the cementite/ferrite(Fe_(3)C/Fe) interfaces in the material. However, the fine structures of the Fe3C/Fe interfaces in the deformed wires are less known to date. In this work, transmission electron microscopic investigation was performed on the atomic structures of the interfaces with the Isaichev orientation relationship(OR) in the wires with progressive deformation strains. In addition to the effect of the dislocation/interface interactions, this work revealed that the deformation-induced partial decomposition of cementite plays an important role in the interface reconstruction during deformation. The interfacial carbon vacancies generated by cementite decomposition and particularly, the amorphization of cementite layers in the sample with ε > 1 could effectively annihilated the interfacial dislocations and consequently relaxed the interfacial stress. The correlations between the interface structure changes and the mechanical properties of the wires were discussed.
基金the National Science and Technology Major Project(Nos.J2019-VI-0023-0139 and J2019-VII-0004-0144)the National Natural Science Foundation of China(No.51871221)the National Key R&D Program of China(No.2020YFA0714900).
文摘A Re-containing Ni-base single crystal superalloy was used to investigate the elementary processes associated with stress-rupture behavior at different temperatures where theγʹrafting occurs.At 900°C,the rupture behavior is mainly determined by the multiplication of dislocations within the wideningγchannels,which is closely linked with the propagation of microcracks along the inherentγ/γʹinterfaces.The rapid formation of lamellaγ/γʹraft structure,along with the developed-well interfacial dislocation networks,and its elastic instability are primarily responsible for the rupture behavior at 1100°C.There is a clear curvature tendency in the Larson-Miller plot of stress-rupture lifetime in relation to stress at high temperatures.It indicates that the influence extent ofγʹrafting on stress-rupture behavior is sensitive to the acting conditions of temperature and stress.
基金supported by the National Natural Science Foundation of China(Grant No.51801214 and 51871222)。
文摘Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-field scanning transmission electron microscopy(HAADFSTEM). β’ phase was precipitated only in the Mg matrix but not in LPSO structures after aging at 200 °C for 24 h. LPSO structure containing stacking defects transforms into the β’-long phase during EB irradiation, which plays a key role in accelerating solute atoms’ diffusion. New complex β’(LPSO) structures formed in the alloy after EB irradiation, such as β’(12 H) structure with an orthorhombic lattice(Mg;Y, Cmcm,a = 2 _(a0)= 0.642 nm, b=4√3_(a0), c = 6 _(c0)= 3.12 nm).
基金financially supported by the National Science and Technology Major Project(No.2017-VI-0002-0072)the National Key R&D Program of China(Nos.2017YFA0700704,2018YFB110660 and 2017YFB1103800)+2 种基金the National Natural Science Foundation of China(Nos.51601192,51671188,51701210 and 51771190)the Youth Innovation Promotion Association,the Chinese Academy of SciencesState Key Lab of Advanced Metals and Materials Open Fund(No.2018-Z07)。
文摘Both surface and internal microstructures of a second-generation Ni-based single crystal(SX) superalloy were studied after creep and rejuvenation heat treatment(RHT).It is indicated that the microstructures,such as the dislocation network,the γ phase and the γ' phase,can be recovered to those after the standard heat treatment(SHT).It is found that RHT affected zone(RAZ) formed at the surface is composed of theγ'-free layer,the transition layer and the recrystallization(RX),which are less than 20 μm in depth totally.Such depth of the RAZ doesn't affect the properties of the superalloy.The morphology of γ' phase at the RAZ is related to the composition of the elements.The average creep life after RHT is close to the average life after SHT.It is concluded that RHT could effectively repair SX parts and increase the total life of the sample after a damage by creep.
基金the National Science and Technology Major Project,China(Nos.2017-VI-0002-0072,Y2019-VII0011-0151)the National Key Research and Development Program,China(No.2018YFB1106600)。
文摘Ceramic cores with good chemical stability and moderate mechanical properties near casting temperatures of 1550℃ for example are used for the manufacturing of internal structures of hollow blades,requiring complex structures and high precision[1–3].However,traditional preparation method based on investment casting is tedious,requiring not only long production cycles but also high cost[4].
基金supported by the National Science and Technology Major Project under Grant No.2017-VI-0002-0072the National Key Research and Development Program of China under Grant No.2017YFA0700704+2 种基金the National Natural Science Foundation of China(NSFC)under Grant Nos.51671188 and 51771190the Youth Innovation Promotion Association,Chinese Academy of Sciences and Innovation Academy for Light-duty Gas TurbineChinese Academy of Sciences under Grant No.CXYJJ20-MS-03。
文摘The oxidation behaviour of a fourth-generation single-crystal superalloy without coating and with two types of MCrAlY coatings at 1140℃was studied.The results showed that both coatings greatly improved the oxidation resistance of the superalloy,and the addition of Hf further improved the oxidation resistance by pinning the oxide layer into the coating.Before and after oxidation,obvious Cr and Al interdiffusion was detected.Inward Cr diffusion induces the precipitation of a topologically close-packed phase,while the diffusion of Al affects the structure of theγ/γ’phase,the solubility of refractory elements,and the formation of an interdiffusion zone.
文摘he co m pound m aterial of n m size particles Ge O2 Si O2 w as synthesied through hydrolysis of Si( O C2 H4) and Ge Cl4 . A heat treatm ent w as carried out for the sa m ples at 100 ~1200 ℃in air . Its optical property w as deter mined by U V Vis spectur m . We have found that theabsorption edge of spectru m shifted progressively to longer w avelengths . The quantu m size ef fect of nanocrystals appears because crystals gro w and energy of optical band gap reduces d ueto the influence of te m perature . By the analysis of X ray diffraction w e have observed theprocess in w hich the structure of particles changed fro m disorder into order .
基金supported by the National Natural Science Foundation of China(Nos.11002122,51172192,11272275 and 11002121)the Natural Science Foundation of Hunan Province, China(No.11JJ4003)the Key Project of Scientific Research Conditions in Hunan Province,China(No.2012TT2040)
文摘In this paper, a finite element model was developed for a turbine blade with thermal barrier coatings to investigate its failure behavior under cyclic thermal loading. Based on temperature and stress fields obtained from finite element simulations, dangerous regions in ceramic coating were determined in terms of the maximum principal stress criterion. The results show that damage preferentially occurs in the chamfer and rabbet of a turbine blade with thermal barrier coatings and its thermal fatigue life decreases with the increase of thermal stress induced by high service temperature.
基金supported by the National Natural Science Foundation of China(Grant Nos.51172192,11272275 and 11002122)the Natural Science Foundation of Hunan Province(Grant No.11JJ4003)the Doctoral Scientific Research Foundation of Xiangtan University(Grant Nos.KZ08022,KZ03013 and KF20140303)
文摘To study the temperature distribution and thermal-stress field in different service stages, a two-dimensional model of a turbine blade with thermal barrier coatings is developed, in which the conjugate heat transfer analysis and the decoupled thermal-stress calculation method are adopted. Based on the simulation results, it is found that a non-uniform distribution of temperature appears in different positions of the blade surface, which has directly impacted on stress field. The maximum temperature with a value of 1030 ℃ occurs at the leading edge. During the steady stage, the maximum stress of thermally grown oxide (TGO) appears in the middle of the suction side, reaching 3.75 GPa. At the end stage of cooling, the maximum compressive stress of TGO with a value of-3.5 GPa occurs at the leading edge. Thus, it can be predicted that during the steady stage the dangerous regions may locate at the suction side, while the leadine edge mav be more Drone to failure on cooling.
基金supported by the National Natural Science Foundation of China(Nos.50802097 and 50832008)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministrythe support of K.C.Wang Education Foundation, Hong Kong
文摘Nanolaminated Ti3AlC2honeycomb monolith with parallel and uniform holes has been prepared through a facile extrusion route by using Ti3AlC2powder as the main raw material.The fabricated honeycomb monolith has high compressive strength of 133 ± 11 and 59 ± 9 MPa,along and perpendicular to the extrusion direction,respectively.It also has good electrical conductivity,and excellent match of thermal expansion coefficient with the washcoat material of γ-AI2O3.These combined properties endow the honeycomb monolith a promising candidate as catalysis substrate for cleaning vehicle exhaust.
文摘Nickel-based single-crystal superalloys are widely used in the manufacture of aeroengine turbine vanes for their excellent high-temperature performance. Low-angle grain boundaries (LAGBs) will be generated inevitably during their manufacture, which are often characterized by grain boundary misorientation (GBM) and will weaken the mechanical properties of superalloys. However, the relationship between GBM and the fatigue properties of superalloys at elevated temperatures has seldom been investigated due to the difficulty in the sample preparation and experiment process. Based on six kinds of bicrystals with different tilt LAGBs made by a second-generation single-crystal superalloy, the effects of misorientation on the grain boundary microstructure and fatigue properties (980 °C) of superalloys were studied systematically in this work. It is found that, with the increase of GBM, the GB precipitates combined with the cast micropores increase monotonically, accordingly both the fatigue life and fatigue strength decrease successively. Fatigue fracture observations show that the cracks of all the bicrystals initiated from the cast micropores at GBs, and then propagated along the GBs. Therefore, the coupling effect of cast micropores and GBM on the fatigue damage mechanisms of the bicrystals are evaluated according to their hindering degrees on the piled-up dislocations. Combining with a hysteresis energy model, a quantitative fatigue strength prediction model of superalloys is established and is well verified by abundant experimental data. This study could provide guidance for fatigue performance prediction and structural design of superalloys.
基金the National Natu-ral Science Foundation of China(Nos.52071133,51904090 and 52071284)the Henan Province Science and Technology Tackling Key Problems Project(No.222102230001)+2 种基金the Henan Province Young Talent Lifting Engineering Project(No.2021HYTP018)the Central Plain Scholar Workstation Project(No.224400510025)the Key R&D projects of Henan Province(No.221111230600).
文摘Bismuth(Bi),as an impurity element in copper and copper-based alloys,usually has a strong tendency of grain boundary(GB)segregation,which depends on the GB characters.However,the influence of such a segregation on the properties of ultrahigh-purity copper has been rarely reported and the exact structural arrangements of Bi atoms at different GBs remain largely unclear.In this study,we investigated the influ-ence of trace amounts of Bi(50-300 wt ppm)on the ductility of an ultrahigh-purity copper(99.99999%)in the range of room temperature to 900°C.The tensile results show that the addition of Bi seriously damages the ductility of the ultrahigh-purity copper at temperatures of 450-900°C,which is due to the GB segregation of Bi.On this basis,such a segregation behavior at different types of GBs,including high and low angle GBs(HAGBs/LAGBs),and twin boundaries(TBs),via the scanning electron microscope-electron backscattered diffraction(SEM-EBSD)and aberration-corrected scanning transmission electron microscope(AC-STEM)investigations,combined with the first-principles calculations were systematically studied.The atomistic characterizations demonstrate an anisotropic Bi segregation,where severe enrich-ment of Bi atoms typically occurs at the HAGBs,while the absence of Bi adsorption prevails at LAGBs or TBs.In particular,the segregated Bi at random HAGBs exhibited the directional bilayer adsorption,while the special symmetrical7 HAGB presented a unique Bi-rich cluster superstructure.Our findings pro-vide a comprehensive experimental and computational understanding on the atomic-scale segregation of impurities in metallic materials.
基金supported by the National Natural Science Foundation of China under Grant Nos.50672102,50832008 and 51032006
文摘By using the first-principles calculation, we studied the mechanisms of point defects in Y4AI209 (YAM), a promising ternary oxide with excellent optical and thermal properties. It is found that the predominant native defect species is closely dependent on the chemical potentials of each constituent. In the case of O-rich condition, the oxygen interstitial has the very low defect formation energy, followed by the anti-site defects and AI vacancy; in the case of AI-rich condition, the oxygen vacancy yields the lowest defect formation energy, followed by the anti-site defects and AI interstitial. The present result shows that in all the possible chemical potential ranges, anti-site defects have relatively low defect formation energy and might exist in high concentration in YAM. Furthermore, AIy anti-site has relatively lower defect formation energy than the YAt anti- site throughout. The behaviors of defect complexes under non-stoichiometric condition, such as the AI203 or Y203 excess, are also investigated. The results provide helpful guide to optimize the experimental synthesizing of YAM.
文摘Creep and stress relaxation behavior, the elastic modulus and fracture toughness of machinable Ti3SiC2 at various temperatures from 20 to 1250℃ were investigated by means of three-point bending tests. The experiments were performed respectively at: (i) fixed stress and changed temperatures, and (ii) fixed temperature and changed stresses. A creep resistance parameter that represents the probability of creep deformation in a given condition was defined as a function of both applied stress and the threshold stress, varying in a range from 0 to 1. Elastic modulus at high temperatures was measured through comparing relative slopes of loading curves in cyclic loading curve. The fracture toughness measured by SENB method showed a stable value in the range of 25-1000℃, but over 1000℃, it declined abruptly from -6.7MPa·m1/2 to -2.0MPa·m1/2 at 1200℃.
基金supported in part by NSF Awards 0715146,0821816,0915220 and 0822283(CTBP)NIHAward P41RR08605-16(NBCR),DOD/DTRA Award HDTRA-09-1-0036+1 种基金CTBP,NBCR,NSF and NIHsupported in part by NIH,NSF,HHMI,CTBP and NBCR.The third,fourth and fifth authors were supported in part by NSF Award 0715146,CTBP,NBCR and HHMI.
文摘We consider the design of an effective and reliable adaptive finite element method(AFEM)for the nonlinear Poisson-Boltzmann equation(PBE).We first examine the two-term regularization technique for the continuous problem recently proposed by Chen,Holst and Xu based on the removal of the singular electrostatic potential inside biomolecules;this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation,the first provably convergent discretization and also allowed for the development of a provably convergent AFEM.However,in practical implementation,this two-term regularization exhibits numerical instability.Therefore,we examine a variation of this regularization technique which can be shown to be less susceptible to such instability.We establish a priori estimates and other basic results for the continuous regularized problem,as well as for Galerkin finite element approximations.We show that the new approach produces regularized continuous and discrete problemswith the samemathematical advantages of the original regularization.We then design an AFEM scheme for the new regularized problem and show that the resulting AFEM scheme is accurate and reliable,by proving a contraction result for the error.This result,which is one of the first results of this type for nonlinear elliptic problems,is based on using continuous and discrete a priori L¥estimates.To provide a high-quality geometric model as input to the AFEM algorithm,we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures,based on the intrinsic local structure tensor of the molecular surface.All of the algorithms described in the article are implemented in the Finite Element Toolkit(FETK),developed and maintained at UCSD.The stability advantages of the new regularization scheme are demonstrated with FETK through comparisons with the original regularization approach for a model problem.The conve