We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge_2Sb_2Te_5(GST).The novel perfect...We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge_2Sb_2Te_5(GST).The novel perfect absorber scheme consists of an array of high-index strong-absorbance GST square resonators separated from a continuous Au substrate by a low-index lossless dielectric layer(silica)and a high-index GST planar cavity.Three absorption peaks with the maximal absorbance up to 99.94% are achieved,owing to the excitation of plasmon-like dipolar or quadrupole resonances from the high-index GST resonators and cavity resonances generated by the GST planar cavity.The intensities and positions of the absorption peaks show strong dependence on structural parameters.A heat transfer model is used to investigate the temporal variation of temperature within the GST region.The results show that the temperature of amorphous GST can reach up to 433 K of the phase transition temperature from room temperature in just 0.37 ns with a relatively low incident light intensity of 1.11×10~8W∕m^2,due to the enhanced ultra-broadband light absorbance through strong plasmon resonances and cavity resonance in the absorber.The study suggests a feasible means to lower the power requirements for photonic devices based on a thermal phase change via engineering ultra-broadband light absorbers.展开更多
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
针对野生保护动物跟踪与监测的低功耗、远程监测、可定制、低成本要求,提出了基于窄带物联网(narrow band internet of things,NB-IoT)的分布式系统设计方案,给出了高效能耗管理、并发通信处理、网络透传关键技术的解决方法。系统由跟...针对野生保护动物跟踪与监测的低功耗、远程监测、可定制、低成本要求,提出了基于窄带物联网(narrow band internet of things,NB-IoT)的分布式系统设计方案,给出了高效能耗管理、并发通信处理、网络透传关键技术的解决方法。系统由跟踪器和监测信息系统组成,跟踪器包括NB-IoT通信与定位模块、低功耗微控制器、锂电池太阳能复合供电组件、高效率电源转换器;监测信息系统包括数据通信设备、服务器和监控终端。实验表明:系统能长期远程采集动物的位置并在WEB地图上显示实时位置和活动轨迹,能对数据进行定制化统计分析并生成报表,跟踪器平均功耗小于50 mW,平均定位误差小于20 m。系统监测范围大、成本低,已试用于某野生动物保护站,效果良好。展开更多
Metasurfaces have emerged as a flexible platform for shaping the electromagnetic field via the tailoring phase,amplitude,and polarization at will.However,the chromatic aberration inherited from building blocks’diffra...Metasurfaces have emerged as a flexible platform for shaping the electromagnetic field via the tailoring phase,amplitude,and polarization at will.However,the chromatic aberration inherited from building blocks’diffractive nature plagues them when used in many practical applications.Current solutions for eliminating chromatic aberration usually rely on searching through many meta-atoms to seek designs that satisfy both phase and phase dispersion preconditions,inevitably leading to intensive design efforts.Moreover,most schemes are commonly valid for incidence with a specific spin state.Here,inspired by the Rayleigh criterion for spot resolution,we present a design principle for broadband achromatic and polarization-insensitive metalenses using two sets of anisotropic nanofins based on phase change material Ge2Sb2Se4Te1.By limiting the rotation angles of all nanofins to either 0 deg or 90 deg,the metalens with a suitable numerical aperture constructed by this fashion allows for achromatic and polarization-insensitive performance across the wavelength range of 4–5μm,while maintaining high focusing efficiency and diffraction-limited performance.We also demonstrate the versatility of our approach by successfully implementing the generation of broadband achromatic and polarization-insensitive focusing optical vortex.This work represents a major advance in achromatic metalenses and may find more applications in compact and chip-scale devices.展开更多
基金973 Program of China(2013CB632704)National Natural Science Foundation of China(NSFC)(11374357,11434017)
文摘We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge_2Sb_2Te_5(GST).The novel perfect absorber scheme consists of an array of high-index strong-absorbance GST square resonators separated from a continuous Au substrate by a low-index lossless dielectric layer(silica)and a high-index GST planar cavity.Three absorption peaks with the maximal absorbance up to 99.94% are achieved,owing to the excitation of plasmon-like dipolar or quadrupole resonances from the high-index GST resonators and cavity resonances generated by the GST planar cavity.The intensities and positions of the absorption peaks show strong dependence on structural parameters.A heat transfer model is used to investigate the temporal variation of temperature within the GST region.The results show that the temperature of amorphous GST can reach up to 433 K of the phase transition temperature from room temperature in just 0.37 ns with a relatively low incident light intensity of 1.11×10~8W∕m^2,due to the enhanced ultra-broadband light absorbance through strong plasmon resonances and cavity resonance in the absorber.The study suggests a feasible means to lower the power requirements for photonic devices based on a thermal phase change via engineering ultra-broadband light absorbers.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
文摘针对野生保护动物跟踪与监测的低功耗、远程监测、可定制、低成本要求,提出了基于窄带物联网(narrow band internet of things,NB-IoT)的分布式系统设计方案,给出了高效能耗管理、并发通信处理、网络透传关键技术的解决方法。系统由跟踪器和监测信息系统组成,跟踪器包括NB-IoT通信与定位模块、低功耗微控制器、锂电池太阳能复合供电组件、高效率电源转换器;监测信息系统包括数据通信设备、服务器和监控终端。实验表明:系统能长期远程采集动物的位置并在WEB地图上显示实时位置和活动轨迹,能对数据进行定制化统计分析并生成报表,跟踪器平均功耗小于50 mW,平均定位误差小于20 m。系统监测范围大、成本低,已试用于某野生动物保护站,效果良好。
基金supported by the National Natural Science Foundation of China(Grant No.12004347)the Scientific and Technological Project in Henan Province(Grant Nos.222102210063 and 232102320057)+2 种基金the Aeronautical Science Foundation of China(Grant Nos.2020Z073055002 and 2019ZF055002)the Innovation and Entrepreneurship Training Program for College Students(Grant Nos.202210485007 and 202210485044)the Graduate Education Innovation Program Foundation(Grant No.2022CX53).
文摘Metasurfaces have emerged as a flexible platform for shaping the electromagnetic field via the tailoring phase,amplitude,and polarization at will.However,the chromatic aberration inherited from building blocks’diffractive nature plagues them when used in many practical applications.Current solutions for eliminating chromatic aberration usually rely on searching through many meta-atoms to seek designs that satisfy both phase and phase dispersion preconditions,inevitably leading to intensive design efforts.Moreover,most schemes are commonly valid for incidence with a specific spin state.Here,inspired by the Rayleigh criterion for spot resolution,we present a design principle for broadband achromatic and polarization-insensitive metalenses using two sets of anisotropic nanofins based on phase change material Ge2Sb2Se4Te1.By limiting the rotation angles of all nanofins to either 0 deg or 90 deg,the metalens with a suitable numerical aperture constructed by this fashion allows for achromatic and polarization-insensitive performance across the wavelength range of 4–5μm,while maintaining high focusing efficiency and diffraction-limited performance.We also demonstrate the versatility of our approach by successfully implementing the generation of broadband achromatic and polarization-insensitive focusing optical vortex.This work represents a major advance in achromatic metalenses and may find more applications in compact and chip-scale devices.