由于多智能体所处环境动态变化,并且单个智能体的决策也会影响其他智能体,这使得单智能体深度强化学习算法难以在多智能体环境中保持稳定.为了适应多智能体环境,本文利用集中训练和分散执行框架Cen-tralized Training with Decentralize...由于多智能体所处环境动态变化,并且单个智能体的决策也会影响其他智能体,这使得单智能体深度强化学习算法难以在多智能体环境中保持稳定.为了适应多智能体环境,本文利用集中训练和分散执行框架Cen-tralized Training with Decentralized Execution(CTDE),对单智能体深度强化学习算法Soft Actor-Critic(SAC)进行了改进,引入智能体通信机制,构建Multi-Agent Soft Actor-Critic(MASAC)算法. MASAC中智能体共享观察信息和历史经验,有效减少了环境不稳定性对算法造成的影响.最后,本文在协同以及协同竞争混合的任务中,对MASAC算法性能进行了实验分析,结果表明MASAC相对于SAC在多智能体环境中具有更好的稳定性.展开更多
文摘由于多智能体所处环境动态变化,并且单个智能体的决策也会影响其他智能体,这使得单智能体深度强化学习算法难以在多智能体环境中保持稳定.为了适应多智能体环境,本文利用集中训练和分散执行框架Cen-tralized Training with Decentralized Execution(CTDE),对单智能体深度强化学习算法Soft Actor-Critic(SAC)进行了改进,引入智能体通信机制,构建Multi-Agent Soft Actor-Critic(MASAC)算法. MASAC中智能体共享观察信息和历史经验,有效减少了环境不稳定性对算法造成的影响.最后,本文在协同以及协同竞争混合的任务中,对MASAC算法性能进行了实验分析,结果表明MASAC相对于SAC在多智能体环境中具有更好的稳定性.