The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 3...The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s.展开更多
Jinping Underground laboratory for Nuclear Astrophysics(JUNA) will take the advantage of the ultra-low background of CJPL lab and high current accelerator based on an ECR source and a highly sensitive detector to dire...Jinping Underground laboratory for Nuclear Astrophysics(JUNA) will take the advantage of the ultra-low background of CJPL lab and high current accelerator based on an ECR source and a highly sensitive detector to directly study for the first time a number of crucial reactions occurring at their relevant stellar energies during the evolution of hydrostatic stars. In its first phase, JUNA aims at the direct measurements of^(25)Mg(p,γ)^(26)Al,^(19)F(p,α)^(16)O,^(13)C(α,n)^(16)O and ^(12)C(α,γ)^(16)O reactions. The experimental setup,which includes an accelerator system with high stability and high intensity, a detector system, and a shielding material with low background, will be established during the above research. The current progress of JUNA will be given.展开更多
In order to improve the multi-ion cooperative transition, we proposed and exploited a novel nanoscale effect, namely the nanoshell effect in bulk materials. Based on the effect, an optimal material structure was desig...In order to improve the multi-ion cooperative transition, we proposed and exploited a novel nanoscale effect, namely the nanoshell effect in bulk materials. Based on the effect, an optimal material structure was designed by coating the surfaces of Ca F_(2):Yb^(3+)micron size particles with ZrO_(2). An about 2 times higher intensity of cooperative luminescence is observed upon laser excitation at 980 nm. Dynamical analysis exhibits that the novel effect plays a key role in improving the performance of cooperative transitions. Our results also suggest that the nanoshell effect in bulk materials is likely to be significant in some special cases, which have not been reported yet in the literature.展开更多
Bear bile has been a valuable and effective medicinal material in traditional Chinese medicine(TCM)for over 13 centuries.However,the current practice of obtaining it through bear farming is under scrutiny for its adve...Bear bile has been a valuable and effective medicinal material in traditional Chinese medicine(TCM)for over 13 centuries.However,the current practice of obtaining it through bear farming is under scrutiny for its adverse impact on bear welfare.Here,we present a new approach for creating artificial bear bile(ABB)as a high-quality and sustainable alternative to natural bear bile.This study addresses the scientific challenges of creating bear bile alternatives through interdisciplinary collaborations across various fields,including resources,chemistry,biology,medicine,pharmacology,and TCM.A comprehensive efficacy assessment system that bridges the gap between TCM and modern medical terminology has been established,allowing for the systematic screening of therapeutic constituents.Through the utilization of chemical synthesis and enzyme engineering technologies,our research has achieved the environmentally friendly,large-scale production of bear bile therapeutic compounds,as well as the optimization and recomposition of ABB formulations.The resulting ABB not only closely resembles natural bear bile in its composition but also offers advantages such as consistent product quality,availability of raw materials,and independence from threatened or wild resources.Comprehensive preclinical efficacy evaluations have demonstrated the equivalence of the therapeutic effects from ABB and those from commercially available drained bear bile(DBB).Furthermore,preclinical toxicological assessment and phase I clinical trials show that the safety of ABB is on par with that of the currently used DBB.This innovative strategy can serve as a new research paradigm for developing alternatives for other endangered TCMs,thereby strengthening the integrity and sustainability of TCM.展开更多
In this paper, we propose and demonstrate an all-fiber passively Q-switched erbium doped fiber laser (EDFL) by using gold nanostars (GNSs) as a saturable absorber (SA) for the first time, to the best of our know...In this paper, we propose and demonstrate an all-fiber passively Q-switched erbium doped fiber laser (EDFL) by using gold nanostars (GNSs) as a saturable absorber (SA) for the first time, to the best of our knowledge. In comparison with other gold nanomorphologies, GNSs have multiple localized surface plasmon resonances, which means that they can be used to construct wideband ultrafast pulse lasers. By inserting the GNS SA into an EDFL cavity pumped by a 980 nm laser diode, a stable passively Q-switched laser at 1564.5 nm was achieved for a threshold pump power of 40 mW. By gradually increasing the pump power from 40 to 120 mW, the pulse duration decreases from 12.8 to 5.3 its and the repetition rate increases from 10 to 17 kHz. Our results indicate that the GNSs are a promising SA for constructing pulse lasers.展开更多
Resonant sidebands in soliton fiber lasers have garnered substantial interest in recent years due to their crucial role in understanding soliton propagation and interaction dynamics.However,most previous studies and a...Resonant sidebands in soliton fiber lasers have garnered substantial interest in recent years due to their crucial role in understanding soliton propagation and interaction dynamics.However,most previous studies and applications were restricted to focusing on only the first few low-order resonant sidebands because higher-order sidebands usually decay exponentially as their wavelengths shift far away from the soliton center and are negligibly weak.Here we report numerically and experimentally significant enhancement of multiple resonant sidebands in a soliton fiber laser mode-locked by a nonlinear polarization evolution mechanism.The birefringence and the gain profile of the laser cavity were shown to be critical for this phenomenon.Multiple intense resonant sidebands were generated whose maximum intensity was more than 30 d B higher than that of the soliton,which is the highest yet reported,to our knowledge.To accurately predict the wavelengths of all high-order resonant sidebands,an explicit formula was derived by taking the third-order dispersion effect into account.The temporal features of multiple orders of resonant sidebands were characterized,which all exhibit exponentially decaying leading edges.This study provides insight into understanding the properties of high-order resonant sidebands in a soliton laser and opens possibilities for constructing multi-wavelength laser sources.展开更多
基金support from diverse funding sources,including the National Key Program for S&T Research and Development of the Ministry of Science and Technology(MOST),Yifang Wang's Science Studio of the Ten Thousand Talents Project,the CAS Key Foreign Cooperation Grant,the National Natural Science Foundation of China(NSFC)Beijing Municipal Science&Technology Commission,the CAS Focused Science Grant,the IHEP Innovation Grant,the CAS Lead Special Training Programthe CAS Center for Excellence in Particle Physics,the CAS International Partnership Program,and the CAS/SAFEA International Partnership Program for Creative Research Teams.
文摘The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s.
基金supported by the National Natural Science Foundation of China(Grant Nos.11490560 and 11321064)the National Basic Research Program of China(Grant No.2013CB834406)
文摘Jinping Underground laboratory for Nuclear Astrophysics(JUNA) will take the advantage of the ultra-low background of CJPL lab and high current accelerator based on an ECR source and a highly sensitive detector to directly study for the first time a number of crucial reactions occurring at their relevant stellar energies during the evolution of hydrostatic stars. In its first phase, JUNA aims at the direct measurements of^(25)Mg(p,γ)^(26)Al,^(19)F(p,α)^(16)O,^(13)C(α,n)^(16)O and ^(12)C(α,γ)^(16)O reactions. The experimental setup,which includes an accelerator system with high stability and high intensity, a detector system, and a shielding material with low background, will be established during the above research. The current progress of JUNA will be given.
基金Project supported by the National Natural Science Foundation of China(12174150)the Open Fund of the State Key Laboratory on Integrated Optoelectronics。
文摘In order to improve the multi-ion cooperative transition, we proposed and exploited a novel nanoscale effect, namely the nanoshell effect in bulk materials. Based on the effect, an optimal material structure was designed by coating the surfaces of Ca F_(2):Yb^(3+)micron size particles with ZrO_(2). An about 2 times higher intensity of cooperative luminescence is observed upon laser excitation at 980 nm. Dynamical analysis exhibits that the novel effect plays a key role in improving the performance of cooperative transitions. Our results also suggest that the nanoshell effect in bulk materials is likely to be significant in some special cases, which have not been reported yet in the literature.
基金supported by the Major Program of National Natural Science Foundation of China(T2192970-T2192974)the CAMS Innovation Fund for Medical Sciences(CIFMS,2021-I2M-1-027).
文摘Bear bile has been a valuable and effective medicinal material in traditional Chinese medicine(TCM)for over 13 centuries.However,the current practice of obtaining it through bear farming is under scrutiny for its adverse impact on bear welfare.Here,we present a new approach for creating artificial bear bile(ABB)as a high-quality and sustainable alternative to natural bear bile.This study addresses the scientific challenges of creating bear bile alternatives through interdisciplinary collaborations across various fields,including resources,chemistry,biology,medicine,pharmacology,and TCM.A comprehensive efficacy assessment system that bridges the gap between TCM and modern medical terminology has been established,allowing for the systematic screening of therapeutic constituents.Through the utilization of chemical synthesis and enzyme engineering technologies,our research has achieved the environmentally friendly,large-scale production of bear bile therapeutic compounds,as well as the optimization and recomposition of ABB formulations.The resulting ABB not only closely resembles natural bear bile in its composition but also offers advantages such as consistent product quality,availability of raw materials,and independence from threatened or wild resources.Comprehensive preclinical efficacy evaluations have demonstrated the equivalence of the therapeutic effects from ABB and those from commercially available drained bear bile(DBB).Furthermore,preclinical toxicological assessment and phase I clinical trials show that the safety of ABB is on par with that of the currently used DBB.This innovative strategy can serve as a new research paradigm for developing alternatives for other endangered TCMs,thereby strengthening the integrity and sustainability of TCM.
基金National Natural Science Foundation of China(NSFC)(11474132,61378004,61527823,61605058,61605219)Natural Science Foundation of Jilin Province(20160520085JH)+3 种基金Key Technology Research and Development Project of Jilin Province(20180201120GX)Major Science and Technology Tendering Project of Jilin Province(20170203012GX)Joint Foundation from Equipment Pre-research and Ministry of Education(6141A02022413)Outstanding Young Talent Fund Project of Jilin Province(20180520188JH)
文摘In this paper, we propose and demonstrate an all-fiber passively Q-switched erbium doped fiber laser (EDFL) by using gold nanostars (GNSs) as a saturable absorber (SA) for the first time, to the best of our knowledge. In comparison with other gold nanomorphologies, GNSs have multiple localized surface plasmon resonances, which means that they can be used to construct wideband ultrafast pulse lasers. By inserting the GNS SA into an EDFL cavity pumped by a 980 nm laser diode, a stable passively Q-switched laser at 1564.5 nm was achieved for a threshold pump power of 40 mW. By gradually increasing the pump power from 40 to 120 mW, the pulse duration decreases from 12.8 to 5.3 its and the repetition rate increases from 10 to 17 kHz. Our results indicate that the GNSs are a promising SA for constructing pulse lasers.
基金National Natural Science Foundation of China(11774132,11904121,61827821,62027822,62075082,62090063,62205121,62235014,U20A20210,U22A2085)The Opened Fund of the State Key Laboratory of Integrated Optoelectronics。
文摘Resonant sidebands in soliton fiber lasers have garnered substantial interest in recent years due to their crucial role in understanding soliton propagation and interaction dynamics.However,most previous studies and applications were restricted to focusing on only the first few low-order resonant sidebands because higher-order sidebands usually decay exponentially as their wavelengths shift far away from the soliton center and are negligibly weak.Here we report numerically and experimentally significant enhancement of multiple resonant sidebands in a soliton fiber laser mode-locked by a nonlinear polarization evolution mechanism.The birefringence and the gain profile of the laser cavity were shown to be critical for this phenomenon.Multiple intense resonant sidebands were generated whose maximum intensity was more than 30 d B higher than that of the soliton,which is the highest yet reported,to our knowledge.To accurately predict the wavelengths of all high-order resonant sidebands,an explicit formula was derived by taking the third-order dispersion effect into account.The temporal features of multiple orders of resonant sidebands were characterized,which all exhibit exponentially decaying leading edges.This study provides insight into understanding the properties of high-order resonant sidebands in a soliton laser and opens possibilities for constructing multi-wavelength laser sources.