Qidong hepatitis B virus (HBV) infection cohort (QBC) is a prospective community-based study designed to investigate causative factors of primary liver cancer (PLC) in Qidong, China, where both PLC and HBV infection a...Qidong hepatitis B virus (HBV) infection cohort (QBC) is a prospective community-based study designed to investigate causative factors of primary liver cancer (PLC) in Qidong, China, where both PLC and HBV infection are highly endemic. Residents aged 20-65 years, living in seven townships of Qidong, were surveyed using hepatitis B surface antigen (HBsAg) serum test and invited to participate in QBC from June 1991 to December 1991. A total of 852 and 786 participants were enrolled in HBsAg-positive and HBsAg-negative sub-cohorts in May 1992, respectively. All participants were actively followed up in person, received HBsAg, alanine aminotransferase, alpha-fetoprotein tests and upper abdominal ultrasonic examination, and donated blood and urine samples once or twice a year. The total response rate was 99.6%, and the number of incident PLC was 201 till the end of February 2017. The ratio of incidence rates was 12.32 [95% confidence interval (CI): 7.16-21.21, P < 0.0001] in HBsAg-positive arm compared with HBsAg-negative arm. The relative risk of PLC was 13.25 (95%CI: 6.67-26.33, P < 0.0001) and 28.05 (95% CI: 13.87-56.73, P < 0.0001) in the HBsAg+/HBeAg-group and the HBsAg+/HBeAg+ group, respectively, as compared to the HBsAg-/HBeAg- group. A series of novel PLC-related mutations including A2159G, A2189C and G2203W at the C gene, A799G, A987G and T1055A at the P gene of HBV genome were identified by using samples from the cohort. The mutation in HBV basal core promoter region of HBV genome has an accumulative effect on the occurrence of PLC. In addition, the tripartite relationship of aflatoxin exposure, P53 mutation and PLC was also investigated. QBC will be used to develop dynamic prediction model for PLC risk by using its long-term follow-up information and serial blood samples. This model is expected to improve the efciency of PLC screening in HBV infection individuals.展开更多
Acupuncture, a therapeutic treatment defined as the insertion of needles into the body at specific points(ie, acupoints), has growing in popularity world-wide to treat various diseases effectively, especially acute an...Acupuncture, a therapeutic treatment defined as the insertion of needles into the body at specific points(ie, acupoints), has growing in popularity world-wide to treat various diseases effectively, especially acute and chronic pain. In parallel, interest in the physiological mechanisms underlying acupuncture analgesia, particularly the neural mechanisms have been increasing. Over the past decades, our understanding of how the central nervous system and peripheral nervous system process signals induced by acupuncture has developed rapidly by using electrophysiological methods. However, with the development of neuroscience, electrophysiology is being challenged by calcium imaging in view field, neuron population and visualization in vivo. Owing to the outstanding spatial resolution, the novel imaging approaches provide opportunities to enrich our knowledge about the neurophysiological mechanisms of acupuncture analgesia at subcellular, cellular, and circuit levels in combination with new labeling, genetic and circuit tracing techniques. Therefore, this review will introduce the principle and the method of calcium imaging applied to acupuncture research. We will also review the current findings in pain research using calcium imaging from in vitro to in vivo experiments and discuss the potential methodological considerations in studying acupuncture analgesia.展开更多
文摘Qidong hepatitis B virus (HBV) infection cohort (QBC) is a prospective community-based study designed to investigate causative factors of primary liver cancer (PLC) in Qidong, China, where both PLC and HBV infection are highly endemic. Residents aged 20-65 years, living in seven townships of Qidong, were surveyed using hepatitis B surface antigen (HBsAg) serum test and invited to participate in QBC from June 1991 to December 1991. A total of 852 and 786 participants were enrolled in HBsAg-positive and HBsAg-negative sub-cohorts in May 1992, respectively. All participants were actively followed up in person, received HBsAg, alanine aminotransferase, alpha-fetoprotein tests and upper abdominal ultrasonic examination, and donated blood and urine samples once or twice a year. The total response rate was 99.6%, and the number of incident PLC was 201 till the end of February 2017. The ratio of incidence rates was 12.32 [95% confidence interval (CI): 7.16-21.21, P < 0.0001] in HBsAg-positive arm compared with HBsAg-negative arm. The relative risk of PLC was 13.25 (95%CI: 6.67-26.33, P < 0.0001) and 28.05 (95% CI: 13.87-56.73, P < 0.0001) in the HBsAg+/HBeAg-group and the HBsAg+/HBeAg+ group, respectively, as compared to the HBsAg-/HBeAg- group. A series of novel PLC-related mutations including A2159G, A2189C and G2203W at the C gene, A799G, A987G and T1055A at the P gene of HBV genome were identified by using samples from the cohort. The mutation in HBV basal core promoter region of HBV genome has an accumulative effect on the occurrence of PLC. In addition, the tripartite relationship of aflatoxin exposure, P53 mutation and PLC was also investigated. QBC will be used to develop dynamic prediction model for PLC risk by using its long-term follow-up information and serial blood samples. This model is expected to improve the efciency of PLC screening in HBV infection individuals.
基金Supported by the National Natural Science Foundation of China (No. 81973963)Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences (No. CI2021A03402)China Postdoctoral Science Foundation (No. 2020M670598)。
文摘Acupuncture, a therapeutic treatment defined as the insertion of needles into the body at specific points(ie, acupoints), has growing in popularity world-wide to treat various diseases effectively, especially acute and chronic pain. In parallel, interest in the physiological mechanisms underlying acupuncture analgesia, particularly the neural mechanisms have been increasing. Over the past decades, our understanding of how the central nervous system and peripheral nervous system process signals induced by acupuncture has developed rapidly by using electrophysiological methods. However, with the development of neuroscience, electrophysiology is being challenged by calcium imaging in view field, neuron population and visualization in vivo. Owing to the outstanding spatial resolution, the novel imaging approaches provide opportunities to enrich our knowledge about the neurophysiological mechanisms of acupuncture analgesia at subcellular, cellular, and circuit levels in combination with new labeling, genetic and circuit tracing techniques. Therefore, this review will introduce the principle and the method of calcium imaging applied to acupuncture research. We will also review the current findings in pain research using calcium imaging from in vitro to in vivo experiments and discuss the potential methodological considerations in studying acupuncture analgesia.