Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis,which makes it of high research and application value.To date,nu...Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis,which makes it of high research and application value.To date,numerous research on cotton has navigated various aspects,from multi-genome assembly,genome editing,mechanism of fiber development,metabolite biosynthesis,and analysis to genetic breeding.Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers.Mature multiple genome editing systems,such as CRISPR/Cas9,Cas12(Cpf1)and cytidine base editing(CBE),have been widely used in the study of candidate genes affecting fiber development.Based on this,the cotton fiber cell development network has been preliminarily drawn.Among them,the MYB-b HLH-WDR(MBW)transcription factor complex and IAA and BR signaling pathway regulate the initiation;various plant hormones,including ethylene,mediated regulatory network and membrane protein overlap fine-regulate elongation.Multistage transcription factors targeting Ces A 4,7,and 8 specifically dominate the whole process of secondary cell wall thickening.And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development.Furthermore,research on the synthesis of cotton secondary metabolite gossypol,resistance to diseases and insect pests,plant architecture regulation,and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties.This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects,thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.展开更多
Dear Editor,With the development of CRISPR-Cas technology,an RNAguided CRISPR activation system has been developed in plants,in which a dead Cas9(dCas9)nuclease is fused to transcriptional activators to regulate the t...Dear Editor,With the development of CRISPR-Cas technology,an RNAguided CRISPR activation system has been developed in plants,in which a dead Cas9(dCas9)nuclease is fused to transcriptional activators to regulate the transcription of endogenous genes(Li et al.,2017;Liu et al.,2017;Manghwar et al.,2020;Ming et al.,2020;Pan et al.,2021).Precise upregulation of gene transcription is emerging as a promising approach for functional genomics research,molecular breeding,and germplasm innovation.However,there have been no reports on the use of the CRISPR-dCas9 transcriptional activation system in cotton.展开更多
Cotton is a pivotal economic crop for natural textile fibers that also serves as an important source of edible oil(Long et al.2023).Cottonseed oil contains approximately14%oleic acid and 59%linoleic acid.An increase i...Cotton is a pivotal economic crop for natural textile fibers that also serves as an important source of edible oil(Long et al.2023).Cottonseed oil contains approximately14%oleic acid and 59%linoleic acid.An increase in monounsaturated fatty acids,particularly oleic acid,enhances the oxidative stability and nutritional value of edible oil(Chen et al.2021).展开更多
Cotton(Gossypium spp.)is a pivotal crop in the global textile industry,providing essential natural fibers.Additionally,cottonseed offers significant value as a source of oil and as feed for livestock(Huang et al.2021;...Cotton(Gossypium spp.)is a pivotal crop in the global textile industry,providing essential natural fibers.Additionally,cottonseed offers significant value as a source of oil and as feed for livestock(Huang et al.2021;Wen et al.2023).The sector,dependent on cotton,features a comprehensive value chain extending from the processing of fibers to the production of finished textiles,and it employs tens of millions of individuals(Dorward et al.1970).展开更多
Jute(Corchorus capsularis L.)is the second most important natural plant fiber source after cotton.However,developing an efficient gene editing system for jute remains a challenge.In this study,the transgenic hairy roo...Jute(Corchorus capsularis L.)is the second most important natural plant fiber source after cotton.However,developing an efficient gene editing system for jute remains a challenge.In this study,the transgenic hairy root system mediated by Agrobacterium rhizogenes strain K599 was developed for Meifeng 4,an elite jute variety widely cultivated in China.The transgenic hairy root system for jute was verified by subcellular localization and bimolecular fluorescence complementation(BiFC)assays.The CHLOROPLASTOS ALTERADOS 1(CcCLA1)gene,which is involved in the development of chloroplasts,was targeted for editing at two sites in Meifeng 4.Based on this hairy root transformation,the gRNA scaffold was placed under the control of cotton ubiquitin GhU6.7 and-GhU6.9 promoters,respectively,to assess the efficiency of gene editing.Results indicated the 50.0%(GhU6.7)and 38.5%(GhU6.9)editing events in the target 2 alleles(gRNA2),but no mutation was detected in the target 1 allele(gRNA1)in transgenic-positive hairy roots.CcCLA1 gene editing at gRNA2 under the control of GhU6.7 in Meifeng 4 was also carried out by Agrobacterium tumefaciens-mediated transformation.Two CcCLA1 mutants were albinic,with a gene editing efficiency of 5.3%.These findings confirm that the CRISPR/Cas9 system,incorporating promoter GhU6.7,can be used as a gene editing tool for jute.展开更多
A promoter of the PNZIP (Pharbitis nil leucine zipper) gene (1.459 kb) was cloned from Pharbitis nil and fused to the GUS(^-glucuronidase) and Bacillus thuringiensis endotoxin (Cry9C) genes. Several transgenic...A promoter of the PNZIP (Pharbitis nil leucine zipper) gene (1.459 kb) was cloned from Pharbitis nil and fused to the GUS(^-glucuronidase) and Bacillus thuringiensis endotoxin (Cry9C) genes. Several transgenic PNZIP::GUS and PNZIP::Cry9C cotton lines were developed by Agrobacterium-mediated transformation. Strong GUS staining was detected in the green tissues of the transgenic PNZIP::GUS cotton plants. In contrast, GUS staining in the reproductive structures such as petals, anther, and immature seeds of PNZIP::GUS cotton was very faint. Two transgenic PNZIP::Cry9C lines and one trans- genic cauliflower mosaic virus (CaMV) 35S::Cry9C line were selected for enzyme-linked immunosorbent assay (ELISA) and insect bioassays. Expression of the Cry9C protein in the 35S::Cry9C line maintained a high level in most tissues ranging from 24.6 to 45.5 ~tg g-I fresh weight. In green tissues such as the leaves, boll rinds, and bracts of the PNZIP::Cry9C line, the Cry9C protein accumulated up to 50.2, 39.7, and 48.3 jag g-a fresh weight respectively. In contrast, seeds of the PNZIP::Cry9C line (PZ1.3) accumulated only 0.26 ~ag g-~ fresh weight of the Cry9C protein, which was 100 times lower than that recorded for the seeds of the CaMV 35S::Cry9C line. The insect bioassay showed that the transgenic PNZIP::Cry9C cotton plant exhibited strong resistance to both the cotton bollworm and the pink bollworm. The PNZIP promoter could effectively drive Bt toxin ex- pression in green tissues of cotton and lower accumulated levels of the Bt protein in seeds. These features should allay public concerns about the safety of transgenic foods. We propose the future utility of PNZIP as an economical, environmentally friendly promoter in cotton biotechnology.展开更多
Genes encoding reporter proteins are used as visual marker-assisted tools in genetic transformation as well as plant breeding. In this study, the red fluorescent protein identified in Discosoma sp. coral(DsRed2) was s...Genes encoding reporter proteins are used as visual marker-assisted tools in genetic transformation as well as plant breeding. In this study, the red fluorescent protein identified in Discosoma sp. coral(DsRed2) was successfully used as a visual marker for cotton genetic engineering. DsRed2 was successfully expressed in two cotton cultivars,JIN668 and YZ1, driven by the Ca MV-35 S promoter via the Agrobacterium-mediated transformation. Our results suggest that DsRed2 expression provides an early-stage selection tool for the transgenic calli via visual observation. Red fluorescence can be detected not only in callus and somatic embryos but also in most tissues and organs of mature plants. The transgenic line Yz-2-DsRed2 was crossed with four different cotton cultivars to assess the transgene heritability and stability in different genetic backgrounds.The heritability of the red color was highly stable when Yz-2-DsRed2 was used as a male parent. The DsRed2 gene expressed 100% in the F_1 hybrids. To investigate the relationship between DsRed2 transcription and DNA methylation, a methylation-specific PCR approach was applied to the Ca MV-35 S promoter region. The results showed a negative association between DNA methylation level in the promoter region and the transgene transcription.Taken together, these findings suggest DsRed2 a visual reporter gene for cotton genetic transformation and molecular breeding programs.展开更多
Dear Editor,Catharanthus roseus,an important medicinal plant native to Madagascar,is the sole source of the two important anticancer drugs vinblastine and vincristine,which are synthesized by the monoterpene-derived i...Dear Editor,Catharanthus roseus,an important medicinal plant native to Madagascar,is the sole source of the two important anticancer drugs vinblastine and vincristine,which are synthesized by the monoterpene-derived indole alkaloid(MIA)pathway(Das et al.,2020).It is also an important model plant for the study of Huanglongbing(HLB),a devastating citrus disease that causes severe economic losses worldwide(Ma et al.,2022).Vincristine is an FDA-approved drug that has been used for acute lymphocytic leukemia,lymphoid blast crisis of chronic myeloid leukemia,and Hodgkin’s/non-Hodgkin’s lymphoma(Below and M Das,2021).展开更多
Cotton(Gossypium hirsutum)is an important fiber crop worldwide.Insect attack causes cotton yield and quality losses.However,little is known about the mechanism of cotton response to insect attack.We simulated insect f...Cotton(Gossypium hirsutum)is an important fiber crop worldwide.Insect attack causes cotton yield and quality losses.However,little is known about the mechanism of cotton response to insect attack.We simulated insect feeding by applying insect oral secretions(OS)to wounds,and combined transcriptome and metabolome analysis to investigate how OS from two major pest species(Helicoverpa armigera and Spodoptera litura)affect cotton defense responses.We found that respectively 12,668 and 13,379 genes were differentially expressed in comparison with wounding alone.On addition of OS,the jasmonic acid signaling pathway was rapidly and strongly induced,whereas genes involved in salicylic acid biosynthesis were downregulated.On constructing a coexpression gene network,we identified a hub gene encoding a leucine-rich repeat receptor kinase that may play an important role in early signal recognition and transduction.OS from the two insect species altered the abundance of flavonoid-related compounds in different patterns.Gossypol remained in lower concentration after OS application than after wounding alone,suggesting a suppressive effect of OS on cotton defense response.This study illustrated transcriptional and metabolic changes of cotton in responding to OS from two chewing insect species,identified potential key response genes,and revealed evidence for OS inhibition of wounding-induced cotton defense response.展开更多
Plants have developed sophisticated systems to cope with herbivore challenge, including morphological barriers and secondary metabolites to reduce damage. In this study, 550 Gossypium genotypes were evaluated for whit...Plants have developed sophisticated systems to cope with herbivore challenge, including morphological barriers and secondary metabolites to reduce damage. In this study, 550 Gossypium genotypes were evaluated for whitefly(Bemisia tabaci) resistance in five experiments including two in the field and three in the greenhouse, with23 resistant and 19 susceptible genotypes selected.Whitefly-resistance index determination showed that a leaf having a high density of hairs had resistance to whitfly egg/nymph production. Longer leaf hairs were also important for resistance. This study revealed that okra shaped leaves reduced adult whitefly oviposition preference, while glabrous leaves and high hair density helped not only in the reduction of the adults but also decreased oviposition preference. Gossypol was also observed to be involved in the reduction of adult whitefly development and/or survival.展开更多
基金the National Natural Science Foundation of China(32200286)the China Postdoctoral Science Foundation(2022TQ0240,2022M722470)。
文摘Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis,which makes it of high research and application value.To date,numerous research on cotton has navigated various aspects,from multi-genome assembly,genome editing,mechanism of fiber development,metabolite biosynthesis,and analysis to genetic breeding.Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers.Mature multiple genome editing systems,such as CRISPR/Cas9,Cas12(Cpf1)and cytidine base editing(CBE),have been widely used in the study of candidate genes affecting fiber development.Based on this,the cotton fiber cell development network has been preliminarily drawn.Among them,the MYB-b HLH-WDR(MBW)transcription factor complex and IAA and BR signaling pathway regulate the initiation;various plant hormones,including ethylene,mediated regulatory network and membrane protein overlap fine-regulate elongation.Multistage transcription factors targeting Ces A 4,7,and 8 specifically dominate the whole process of secondary cell wall thickening.And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development.Furthermore,research on the synthesis of cotton secondary metabolite gossypol,resistance to diseases and insect pests,plant architecture regulation,and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties.This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects,thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.
基金funded by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021JJLH0042)the China Postdoctoral Science Foundation(2022M723457)+3 种基金the Hainan Yazhou Bay Seed Lab(B21HJUS03,B21HJ8103,and B21HJ0209)the Hubei Hongshan Laboratory(2021hszd013)the National Natural Science Foundation of China(31971983)Fundamental Research Funds for the Central Universities(2021ZKPY003)to S.J.
文摘Dear Editor,With the development of CRISPR-Cas technology,an RNAguided CRISPR activation system has been developed in plants,in which a dead Cas9(dCas9)nuclease is fused to transcriptional activators to regulate the transcription of endogenous genes(Li et al.,2017;Liu et al.,2017;Manghwar et al.,2020;Ming et al.,2020;Pan et al.,2021).Precise upregulation of gene transcription is emerging as a promising approach for functional genomics research,molecular breeding,and germplasm innovation.However,there have been no reports on the use of the CRISPR-dCas9 transcriptional activation system in cotton.
基金supported by the Science and Technology Innovation Talents in Universities of Henan Province,China(24HASTIT053)the National Natural Science Foundation of China(32172041)+1 种基金the Natural Science Foundation of Henan Province,China(232300421026)the Science and Technology Innovation 2030,China(2022ZD0402001-04)。
文摘Cotton is a pivotal economic crop for natural textile fibers that also serves as an important source of edible oil(Long et al.2023).Cottonseed oil contains approximately14%oleic acid and 59%linoleic acid.An increase in monounsaturated fatty acids,particularly oleic acid,enhances the oxidative stability and nutritional value of edible oil(Chen et al.2021).
文摘Cotton(Gossypium spp.)is a pivotal crop in the global textile industry,providing essential natural fibers.Additionally,cottonseed offers significant value as a source of oil and as feed for livestock(Huang et al.2021;Wen et al.2023).The sector,dependent on cotton,features a comprehensive value chain extending from the processing of fibers to the production of finished textiles,and it employs tens of millions of individuals(Dorward et al.1970).
基金supported by the National Natural Science Foundation of China (31771369)the Natural Science Foundation of Fujian, China (2023J01443)the China Agriculture Research System of the Ministry of Agriculture and MARA (CARS-16)
文摘Jute(Corchorus capsularis L.)is the second most important natural plant fiber source after cotton.However,developing an efficient gene editing system for jute remains a challenge.In this study,the transgenic hairy root system mediated by Agrobacterium rhizogenes strain K599 was developed for Meifeng 4,an elite jute variety widely cultivated in China.The transgenic hairy root system for jute was verified by subcellular localization and bimolecular fluorescence complementation(BiFC)assays.The CHLOROPLASTOS ALTERADOS 1(CcCLA1)gene,which is involved in the development of chloroplasts,was targeted for editing at two sites in Meifeng 4.Based on this hairy root transformation,the gRNA scaffold was placed under the control of cotton ubiquitin GhU6.7 and-GhU6.9 promoters,respectively,to assess the efficiency of gene editing.Results indicated the 50.0%(GhU6.7)and 38.5%(GhU6.9)editing events in the target 2 alleles(gRNA2),but no mutation was detected in the target 1 allele(gRNA1)in transgenic-positive hairy roots.CcCLA1 gene editing at gRNA2 under the control of GhU6.7 in Meifeng 4 was also carried out by Agrobacterium tumefaciens-mediated transformation.Two CcCLA1 mutants were albinic,with a gene editing efficiency of 5.3%.These findings confirm that the CRISPR/Cas9 system,incorporating promoter GhU6.7,can be used as a gene editing tool for jute.
基金the National Natural Science Foundation of China (31171592, 31371673)Fundamental Research Funds for the Central Universities (2013PY064)
文摘A promoter of the PNZIP (Pharbitis nil leucine zipper) gene (1.459 kb) was cloned from Pharbitis nil and fused to the GUS(^-glucuronidase) and Bacillus thuringiensis endotoxin (Cry9C) genes. Several transgenic PNZIP::GUS and PNZIP::Cry9C cotton lines were developed by Agrobacterium-mediated transformation. Strong GUS staining was detected in the green tissues of the transgenic PNZIP::GUS cotton plants. In contrast, GUS staining in the reproductive structures such as petals, anther, and immature seeds of PNZIP::GUS cotton was very faint. Two transgenic PNZIP::Cry9C lines and one trans- genic cauliflower mosaic virus (CaMV) 35S::Cry9C line were selected for enzyme-linked immunosorbent assay (ELISA) and insect bioassays. Expression of the Cry9C protein in the 35S::Cry9C line maintained a high level in most tissues ranging from 24.6 to 45.5 ~tg g-I fresh weight. In green tissues such as the leaves, boll rinds, and bracts of the PNZIP::Cry9C line, the Cry9C protein accumulated up to 50.2, 39.7, and 48.3 jag g-a fresh weight respectively. In contrast, seeds of the PNZIP::Cry9C line (PZ1.3) accumulated only 0.26 ~ag g-~ fresh weight of the Cry9C protein, which was 100 times lower than that recorded for the seeds of the CaMV 35S::Cry9C line. The insect bioassay showed that the transgenic PNZIP::Cry9C cotton plant exhibited strong resistance to both the cotton bollworm and the pink bollworm. The PNZIP promoter could effectively drive Bt toxin ex- pression in green tissues of cotton and lower accumulated levels of the Bt protein in seeds. These features should allay public concerns about the safety of transgenic foods. We propose the future utility of PNZIP as an economical, environmentally friendly promoter in cotton biotechnology.
基金supported by National Key Research and Development Program(2016YFD0100203-9)National R&D Project of Transgenic Crops of Ministry of Science and Technology of China(2016ZX08010001-006)+1 种基金Program of Introducing Talents of Discipline to Universities in China(B14032)Fundamental Research Funds for the Central Universities(2013PY064,2662015PY028,2662015PY091)
文摘Genes encoding reporter proteins are used as visual marker-assisted tools in genetic transformation as well as plant breeding. In this study, the red fluorescent protein identified in Discosoma sp. coral(DsRed2) was successfully used as a visual marker for cotton genetic engineering. DsRed2 was successfully expressed in two cotton cultivars,JIN668 and YZ1, driven by the Ca MV-35 S promoter via the Agrobacterium-mediated transformation. Our results suggest that DsRed2 expression provides an early-stage selection tool for the transgenic calli via visual observation. Red fluorescence can be detected not only in callus and somatic embryos but also in most tissues and organs of mature plants. The transgenic line Yz-2-DsRed2 was crossed with four different cotton cultivars to assess the transgene heritability and stability in different genetic backgrounds.The heritability of the red color was highly stable when Yz-2-DsRed2 was used as a male parent. The DsRed2 gene expressed 100% in the F_1 hybrids. To investigate the relationship between DsRed2 transcription and DNA methylation, a methylation-specific PCR approach was applied to the Ca MV-35 S promoter region. The results showed a negative association between DNA methylation level in the promoter region and the transgene transcription.Taken together, these findings suggest DsRed2 a visual reporter gene for cotton genetic transformation and molecular breeding programs.
基金supported by grants from the National Natural Science Foundation of China(31872077)the National Key Research and Development Program of China(2021YFD1400800)Special Projects for Foreign Cooperation of Yunnan Province(no.202003AD150014)to F.D.
文摘Dear Editor,Catharanthus roseus,an important medicinal plant native to Madagascar,is the sole source of the two important anticancer drugs vinblastine and vincristine,which are synthesized by the monoterpene-derived indole alkaloid(MIA)pathway(Das et al.,2020).It is also an important model plant for the study of Huanglongbing(HLB),a devastating citrus disease that causes severe economic losses worldwide(Ma et al.,2022).Vincristine is an FDA-approved drug that has been used for acute lymphocytic leukemia,lymphoid blast crisis of chronic myeloid leukemia,and Hodgkin’s/non-Hodgkin’s lymphoma(Below and M Das,2021).
基金supported by the National Key Research and Development Program of China(2016YFD0100203-9)National R&D Project of Transgenic Crops(2016ZX08010001-006)National Natural Science Foundation of China(31371673)。
文摘Cotton(Gossypium hirsutum)is an important fiber crop worldwide.Insect attack causes cotton yield and quality losses.However,little is known about the mechanism of cotton response to insect attack.We simulated insect feeding by applying insect oral secretions(OS)to wounds,and combined transcriptome and metabolome analysis to investigate how OS from two major pest species(Helicoverpa armigera and Spodoptera litura)affect cotton defense responses.We found that respectively 12,668 and 13,379 genes were differentially expressed in comparison with wounding alone.On addition of OS,the jasmonic acid signaling pathway was rapidly and strongly induced,whereas genes involved in salicylic acid biosynthesis were downregulated.On constructing a coexpression gene network,we identified a hub gene encoding a leucine-rich repeat receptor kinase that may play an important role in early signal recognition and transduction.OS from the two insect species altered the abundance of flavonoid-related compounds in different patterns.Gossypol remained in lower concentration after OS application than after wounding alone,suggesting a suppressive effect of OS on cotton defense response.This study illustrated transcriptional and metabolic changes of cotton in responding to OS from two chewing insect species,identified potential key response genes,and revealed evidence for OS inhibition of wounding-induced cotton defense response.
基金supported by the National Key Research and Development Plan (2016YFD0100203-9)National Natural Science Foundation of China (31371673)National R&D Project of Transgenic Crops of Ministry of Science and Technology of China (2016ZX08010001-006) to Professor Shuangxia Jin
文摘Plants have developed sophisticated systems to cope with herbivore challenge, including morphological barriers and secondary metabolites to reduce damage. In this study, 550 Gossypium genotypes were evaluated for whitefly(Bemisia tabaci) resistance in five experiments including two in the field and three in the greenhouse, with23 resistant and 19 susceptible genotypes selected.Whitefly-resistance index determination showed that a leaf having a high density of hairs had resistance to whitfly egg/nymph production. Longer leaf hairs were also important for resistance. This study revealed that okra shaped leaves reduced adult whitefly oviposition preference, while glabrous leaves and high hair density helped not only in the reduction of the adults but also decreased oviposition preference. Gossypol was also observed to be involved in the reduction of adult whitefly development and/or survival.