A novel photo-induced initiating system, 2,2-dimethoxy-2-phenylacetophenone (DMPA)/ferric tri(NN-diethyldithiocarbamate) [Fe(DC)(3)], was developed and used for the atom transfer radical polymerization (ATRP) of styre...A novel photo-induced initiating system, 2,2-dimethoxy-2-phenylacetophenone (DMPA)/ferric tri(NN-diethyldithiocarbamate) [Fe(DC)(3)], was developed and used for the atom transfer radical polymerization (ATRP) of styrene in toluene. The polymerization proceeds with DMPA as photo-initiator, Fe(DC)(3) as catalyst and DC as a reversible transfer group, while the halogen and ligands are free. Well-defined PSt was prepared and the polymerization mechanism revealed by end group analysis belongs to a reverse ATRP. Block copolymer was prepared by using thus obtained PSt as macroinitiator and Fe(DC)(2) as catalyst under UV light irradiation via a conventional ATRP process.展开更多
'Living'/controlled radical polymerization of styrene was carried out with diethyl 2,3-dicyano-2,3-diphenylsuccinate (DCDPS)/CuCl2/bipyridine (bipy) initiation system at 120 degreesC. The molecular weights of ...'Living'/controlled radical polymerization of styrene was carried out with diethyl 2,3-dicyano-2,3-diphenylsuccinate (DCDPS)/CuCl2/bipyridine (bipy) initiation system at 120 degreesC. The molecular weights of resultant PSt increased with the monomer conversion and the polydispersities were in the range of 1.37 similar to1.52. A linear ln([M](o)/[M]) versus time plot was also obtained indicating the constant concentration of growing radicals during the polymerization with this initiation system. End group analysis by H-1-NMR spectroscopic studies showed that the end groups of the polymer obtained is omega -functionalized by a chlorine group from the catalyst and alpha -functionalized by a (carbethoxy-cyano-phenyl)methyl group from the fragments of the initiator. Having CI atom at the chain end, the PSt obtained can be used as a macroinitiator to promote a chain-extension reaction with fresh St and block copolymerization reaction with a second monomer, such as methyl methacrylate, in the presence of CuCl/bipy catalyst via a conventional ATRP process.展开更多
The large quantity of sediment produced in the hearth during vanadium titano-magnetite smelting in a blast furnace(BF) affects the stability of the blast furnace operation. Testing and analysis of the sediment in th...The large quantity of sediment produced in the hearth during vanadium titano-magnetite smelting in a blast furnace(BF) affects the stability of the blast furnace operation. Testing and analysis of the sediment in the hearth of Chengde Iron and Steel Company?s BF No.7 revealed that it was mainly concentrated in the location below the tuyere and above the iron notch. Notably, some of the bonding material(sediment) consisted of greater than 50% pig iron, and the pig iron distributed in the slag was granular. It is proposed that a large quantity of Ti C and Ti(C,N) are deposited on the surface of the pig iron. These high melting point materials mix with iron drops, preventing the slag from flowing freely, thus leading to the formation of bonding materials. In addition, the viscosity and melting temperature of the slag in the tuyere areas fluctuate greatly, and thus the properties of the slag are unstable. Moreover, the slag contains large quantities of carbon, which results in the reduction of Ti O2. The resultant precipitation of Ti is followed by the formation of Ti C in the slag, which also leads to an increase in the viscosity of the slag and difficulty in achieving separation of the slag-iron. In fact, all of these factors interact with each other, and as a result, sediment is formed when the operating conditions in the hearth fluctuate.展开更多
The sudden emergence of severe acute respiratory syndrome coronavirus(SARS-CoV) has caused global panic in 2003,and the risk of SARS-CoV outbreak still exists. However, no specific antiviral drug or vaccine is availab...The sudden emergence of severe acute respiratory syndrome coronavirus(SARS-CoV) has caused global panic in 2003,and the risk of SARS-CoV outbreak still exists. However, no specific antiviral drug or vaccine is available;thus, the development of therapeutic antibodies against SARS-CoV is needed. In this study, a nanobody phage-displayed library was constructed from peripheral blood mononuclear cells of alpacas immunized with the recombinant receptor-binding domain(RBD) of SARS-CoV. Four positive clones were selected after four rounds of bio-panning and subjected to recombinant expression in E. coli. Further biological identification demonstrated that one of the nanobodies, S14, showed high affinity to SARS-CoV RBD and potent neutralization activity at the picomole level against SARS-CoV pseudovirus. A competitive inhibition assay showed that S14 blocked the binding of SARS-CoV RBD to either soluble or cell-expressed angiotensinconverting enzyme 2(ACE2). In summary, we developed a novel nanobody targeting SARS-CoV RBD, which might be useful for the development of therapeutics against SARS.展开更多
Hundreds of C60 derivatives stand out as electrontransporting materials(ETMs), for example, in perovskite solar cells(PSCs), due to their properties on electron extraction or defect passivation. However, it still lack...Hundreds of C60 derivatives stand out as electrontransporting materials(ETMs), for example, in perovskite solar cells(PSCs), due to their properties on electron extraction or defect passivation. However, it still lacks of guidelines to update C60-based ETMs with excellent photoelectric properties. In this work, crystallographic data of eight C60-based ETMs, including pristine C60 and the well-known PCBM as well as six newly synthesized fullerenes, are analyzed to establish the connections between derivatized structures and photoelectric properties for the typical carbon cluster of C60. In terms of packing centroid-centroid distance between neighboring carbon cages, the crystallographic data are useful for probing photoelectric properties, such as electrochemical properties, electron mobility and photovoltaic performances, and therefore facilitate to design novel C60-based ETMs for PSCs with high performances.展开更多
文摘A novel photo-induced initiating system, 2,2-dimethoxy-2-phenylacetophenone (DMPA)/ferric tri(NN-diethyldithiocarbamate) [Fe(DC)(3)], was developed and used for the atom transfer radical polymerization (ATRP) of styrene in toluene. The polymerization proceeds with DMPA as photo-initiator, Fe(DC)(3) as catalyst and DC as a reversible transfer group, while the halogen and ligands are free. Well-defined PSt was prepared and the polymerization mechanism revealed by end group analysis belongs to a reverse ATRP. Block copolymer was prepared by using thus obtained PSt as macroinitiator and Fe(DC)(2) as catalyst under UV light irradiation via a conventional ATRP process.
文摘'Living'/controlled radical polymerization of styrene was carried out with diethyl 2,3-dicyano-2,3-diphenylsuccinate (DCDPS)/CuCl2/bipyridine (bipy) initiation system at 120 degreesC. The molecular weights of resultant PSt increased with the monomer conversion and the polydispersities were in the range of 1.37 similar to1.52. A linear ln([M](o)/[M]) versus time plot was also obtained indicating the constant concentration of growing radicals during the polymerization with this initiation system. End group analysis by H-1-NMR spectroscopic studies showed that the end groups of the polymer obtained is omega -functionalized by a chlorine group from the catalyst and alpha -functionalized by a (carbethoxy-cyano-phenyl)methyl group from the fragments of the initiator. Having CI atom at the chain end, the PSt obtained can be used as a macroinitiator to promote a chain-extension reaction with fresh St and block copolymerization reaction with a second monomer, such as methyl methacrylate, in the presence of CuCl/bipy catalyst via a conventional ATRP process.
基金Item Sponsored by National Natural Science Foundation of China(U1360205)
文摘The large quantity of sediment produced in the hearth during vanadium titano-magnetite smelting in a blast furnace(BF) affects the stability of the blast furnace operation. Testing and analysis of the sediment in the hearth of Chengde Iron and Steel Company?s BF No.7 revealed that it was mainly concentrated in the location below the tuyere and above the iron notch. Notably, some of the bonding material(sediment) consisted of greater than 50% pig iron, and the pig iron distributed in the slag was granular. It is proposed that a large quantity of Ti C and Ti(C,N) are deposited on the surface of the pig iron. These high melting point materials mix with iron drops, preventing the slag from flowing freely, thus leading to the formation of bonding materials. In addition, the viscosity and melting temperature of the slag in the tuyere areas fluctuate greatly, and thus the properties of the slag are unstable. Moreover, the slag contains large quantities of carbon, which results in the reduction of Ti O2. The resultant precipitation of Ti is followed by the formation of Ti C in the slag, which also leads to an increase in the viscosity of the slag and difficulty in achieving separation of the slag-iron. In fact, all of these factors interact with each other, and as a result, sediment is formed when the operating conditions in the hearth fluctuate.
基金This study was supported by SKLPBS1805 and 2019-JCJQ-JJ-167(to G.Z.)supported by the National Science Fund for Distinguished Young Scholar(No.81925025)+1 种基金the Innovative Research Group(No.81621005)from the NSFCthe Innovation Fund for Medical Sciences(No.2019-I2M-5-049)from the Chinese Academy of Medical Sciences。
文摘The sudden emergence of severe acute respiratory syndrome coronavirus(SARS-CoV) has caused global panic in 2003,and the risk of SARS-CoV outbreak still exists. However, no specific antiviral drug or vaccine is available;thus, the development of therapeutic antibodies against SARS-CoV is needed. In this study, a nanobody phage-displayed library was constructed from peripheral blood mononuclear cells of alpacas immunized with the recombinant receptor-binding domain(RBD) of SARS-CoV. Four positive clones were selected after four rounds of bio-panning and subjected to recombinant expression in E. coli. Further biological identification demonstrated that one of the nanobodies, S14, showed high affinity to SARS-CoV RBD and potent neutralization activity at the picomole level against SARS-CoV pseudovirus. A competitive inhibition assay showed that S14 blocked the binding of SARS-CoV RBD to either soluble or cell-expressed angiotensinconverting enzyme 2(ACE2). In summary, we developed a novel nanobody targeting SARS-CoV RBD, which might be useful for the development of therapeutics against SARS.
基金This work was supported by the National Nature Science Foundation of China (Nos.92061122,92061204,21721001)the China Postdoctoral Science Foundation(No.2020M680197)the Natural Science Foundation of Guangxi Province of China(No.2020GXNSFBA159037).
文摘Hundreds of C60 derivatives stand out as electrontransporting materials(ETMs), for example, in perovskite solar cells(PSCs), due to their properties on electron extraction or defect passivation. However, it still lacks of guidelines to update C60-based ETMs with excellent photoelectric properties. In this work, crystallographic data of eight C60-based ETMs, including pristine C60 and the well-known PCBM as well as six newly synthesized fullerenes, are analyzed to establish the connections between derivatized structures and photoelectric properties for the typical carbon cluster of C60. In terms of packing centroid-centroid distance between neighboring carbon cages, the crystallographic data are useful for probing photoelectric properties, such as electrochemical properties, electron mobility and photovoltaic performances, and therefore facilitate to design novel C60-based ETMs for PSCs with high performances.