Covalent/metal organic frameworks are highly attractive due to their tunable structure and properties,and broad applications in multiple fields.However,they still suffer from numbers of drawbacks including low solubil...Covalent/metal organic frameworks are highly attractive due to their tunable structure and properties,and broad applications in multiple fields.However,they still suffer from numbers of drawbacks including low solubility,harsh synthesis and fabrication,and low mechanical flexibility.Herein,we report a new organic framework consisting of macrocycles and organic frames in its periodic structure,and denote it as macrocycle organic polymer(MOP).The size-tunable macrocycles containing peripheral furan units are synthesized by anionic ring-opening polymerization,which undergo a reversible Diels-Alde reaction with bismaleimide to generate/degrade MOPs at given temperatures.Relying on above features,MOPs exhibit excellent flexibility,healable ability and recycle ability.Interestingly,owing to the“living”nature of anionic ring-opening polymerization,MOPs can self-grow into bigger sizes in the presence of monomer and catalysis,analogs to the living creatures.Moreover,their high porosity and rich thioether structure enable them as good metal ion absorbers and promising applications in wearable electronics.展开更多
基金Financial support from the National Natural Science Foundation of China(22275193)the Natural Science Foundation of Fujian Province(E131AJ0101)+2 种基金Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZR115)STS Project of Putian-CAS(2020HJSTS001)Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences(E055AJ01)is gratefully acknowledged.
文摘Covalent/metal organic frameworks are highly attractive due to their tunable structure and properties,and broad applications in multiple fields.However,they still suffer from numbers of drawbacks including low solubility,harsh synthesis and fabrication,and low mechanical flexibility.Herein,we report a new organic framework consisting of macrocycles and organic frames in its periodic structure,and denote it as macrocycle organic polymer(MOP).The size-tunable macrocycles containing peripheral furan units are synthesized by anionic ring-opening polymerization,which undergo a reversible Diels-Alde reaction with bismaleimide to generate/degrade MOPs at given temperatures.Relying on above features,MOPs exhibit excellent flexibility,healable ability and recycle ability.Interestingly,owing to the“living”nature of anionic ring-opening polymerization,MOPs can self-grow into bigger sizes in the presence of monomer and catalysis,analogs to the living creatures.Moreover,their high porosity and rich thioether structure enable them as good metal ion absorbers and promising applications in wearable electronics.