The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field...The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.展开更多
Silicon(Si)-based solid-state batteries(Si-SSBs)are attracting tremendous attention because of their high energy density and unprecedented safety,making them become promising candidates for next-generation energy stor...Silicon(Si)-based solid-state batteries(Si-SSBs)are attracting tremendous attention because of their high energy density and unprecedented safety,making them become promising candidates for next-generation energy storage systems.Nevertheless,the commercialization of Si-SSBs is significantly impeded by enormous challenges including large volume variation,severe interfacial problems,elusive fundamental mechanisms,and unsatisfied electrochemical performance.Besides,some unknown electrochemical processes in Si-based anode,solid-state electrolytes(SSEs),and Si-based anode/SSE interfaces are still needed to be explored,while an in-depth understanding of solid–solid interfacial chemistry is insufficient in Si-SSBs.This review aims to summarize the current scientific and technological advances and insights into tackling challenges to promote the deployment of Si-SSBs.First,the differences between various conventional liquid electrolyte-dominated Si-based lithium-ion batteries(LIBs)with Si-SSBs are discussed.Subsequently,the interfacial mechanical contact model,chemical reaction properties,and charge transfer kinetics(mechanical–chemical kinetics)between Si-based anode and three different SSEs(inorganic(oxides)SSEs,organic–inorganic composite SSEs,and inorganic(sulfides)SSEs)are systemically reviewed,respectively.Moreover,the progress for promising inorganic(sulfides)SSE-based Si-SSBs on the aspects of electrode constitution,three-dimensional structured electrodes,and external stack pressure is highlighted,respectively.Finally,future research directions and prospects in the development of Si-SSBs are proposed.展开更多
The near-infrared(NIR)persistent luminescence materials(PLMs)can remain long-lasting luminescence after removal of the excitation light,which permits bioimaging with high sensitivity owing to the absence of background...The near-infrared(NIR)persistent luminescence materials(PLMs)can remain long-lasting luminescence after removal of the excitation light,which permits bioimaging with high sensitivity owing to the absence of background fluorescence interference from in situ excitation.Recently,the NIR PLMs have aroused intensive research interest in bioimaging.However,the optimal excitation wavelength of current NIR PLMs is located in the ultraviolet region with shallow tissue penetration,making it difficult to activate effectively in vivo,and seriously hindering their further application in bioimaging.Herein,we report a novel kind of Cr^(3+)ions and Y^(3+)ions co-doped NIR PLM,Zn_(1.3)Ga_(1.4)Sn_(0.3)O_(4):Cr^(3+),Y^(3+)(ZGSCY),which emits NIR persistent luminescence at 696 nm.Compared with Zn_(1.3)Ga_(1.4)Sn_(0.3)O_(4):Cr^(3+)(ZGSC)excited by the light with a wavelength in the biological window(>650 nm),after being co-doped with Y^(3+)ions,the NIR persistent luminescence performance of ZGSCY is significantly improved because of the increase of trap concentration in the matrix.In addition,we synthesized ZGSCY nanoparticles(NPs)by the combustion method,which exhibit excellent optical properties after being excited by the light with a wavelength in the biological window.After surface modification with PEG,the ZGSCY NPs present low cytotoxicity.Notably,due to the co-doping of Y^(3+)ions,the signal-to-noise ratio(SNR)of ZGSCY NPs in vivo imaging is about 1.8 times higher than that of the ZGSC NPs.Furthermore,the rechargeable in vivo imaging and passive tumor-targeted imaging are successfully achieved by activating with a lightemitting diode(LED,659 nm)after intravenous injection of ZGSCY.Thus,this kind of NIR PLM with high excitation efficiency performance in the biological window is expected to promote its biomedical application in deep tissues.展开更多
In very recent years,ultraviolet(UV)persistent luminescent materials(PLMs)have attracted widespread attention due to their potential biological applications.However,owing to the lack of suitable emitters and hosts,the...In very recent years,ultraviolet(UV)persistent luminescent materials(PLMs)have attracted widespread attention due to their potential biological applications.However,owing to the lack of suitable emitters and hosts,the design and development of excellent UV PLMs remain challenging.Here,we report a new Gd-based PLM NaGdGeO_(4):Bi^(3+)with super-long UVA persistent luminescence(PersL).By further codoping Li^(+)ions to increase the concentration of traps,the UVA PersL intensity of NaGdGeO_(4):Bi^(3+)is increased by 5.5 times.The optimal NaGdGeO_(4):Bi^(3+),Li^(+)exhibits excellent UVA PersL and can persist for more than 200 h.Moreover,the phosphor NaGdGeO_(4):Bi^(3+),Li^(+)also exhibits photostimulated property with a red LED or NIR laser excitation after the long-term decay,and can be activated by X-ray.This promising Gd-based UVA PLM is expected to have potential applications in biomedicine through triggering photocatalysts or photosensitizers by its UVA PersL to achieve photodynamic therapy and its potential ability of magnetic resonance(MR)imaging due to Gd^(3+)ions as MR imaging probe contained in the host NaGdGeO_(4).展开更多
A yellow emitting long afterglow luminescence material SrSc_(2)O_(4):Pr^(3+)was successfully prepared by solid state reaction method.SrSc_(2)O_(4):Pr^(3+)phosphor shows a long afterglow luminescence peak at about 495,...A yellow emitting long afterglow luminescence material SrSc_(2)O_(4):Pr^(3+)was successfully prepared by solid state reaction method.SrSc_(2)O_(4):Pr^(3+)phosphor shows a long afterglow luminescence peak at about 495,545,621,630 and 657 nm,respectively,corresponding to the f–f transitions of Pr^(3+).The afterglow chromaticity coordinates of SrSc_(2)O_(4):1 at%Pr^(3+)were calculated to be(0.35,0.41),indicating that the afterglow emission is close to the light of yellow region.And,the afterglow luminescence of the optimal sample doped by 1 at%Pr^(3+)can persist for over 3 h.The thermoluminescence results suggest that there are three types of traps with depth of 0.61,0.69 and 0.78 eV exiting for all the samples,which are produced by the addition of Pr^(3+)ions.The trap density of SrSc_(2)O_(4):1 at%Pr^(3+)is the maximum when the incorporation of Pr^(3+)ions reaches 1 at%,which thus results in the longest afterglow luminescence.All the results indicate that SrSc_(2)O_(4):Pr^(3+)can be a potential candidate of novel long afterglow phosphors.展开更多
The greenhouse gas (GHG) footprint of an agricultural system is a measure of the climate change impact potential (CCIP) exerted by the formation of its product(s), its accurate quantification is essential for de...The greenhouse gas (GHG) footprint of an agricultural system is a measure of the climate change impact potential (CCIP) exerted by the formation of its product(s), its accurate quantification is essential for determining the green value added tax of agricultural products for food markets, which in turn may drastically change the current patterns of food consumption and production towards a product life cycle oriented economy. This paper reviews the literature regarding GHG footprints of crop cultivation systems.The review concludes that few studies have fully considered the categories/ items of net GHG emissions from an investigated crop cultivation system, and thus probably led to biases in footprint estimation. Most studies to date have even neglected changes in the soil organic carbon stocks of ecosystems with annual crops, while process-oriented biogeochemical models so far have seldom been involved in GHG footprint quantification.To help with solving these problems or drawbacks, the authors propose a generic methodological framework for quantifying GHG footprints of crop cultivation systems free from grazing, which takes into account all direct/indirect GHG contributors within a 'cradle-to-gate' life cycle. The authors then provide example values of some GHG emission factors, such as those from machinery operations and other agricultural inputs, extracted from the literature. In addition, direct measurements or model simulations of other major on-farm emission factors are emphasized. The need to further update this methodological framework in future studies, especially by adapting it to mixed crop-livestock production systems, is also indicated.展开更多
基金This work was supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020SA001515110905).
文摘The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.
基金supported by the National Natural Science Foundation of China(Grants Nos.52072323,52122211 and 21875155)the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Grant No.LAPS22005)+3 种基金the Frontier Exploration Projects of Longmen Laboratory(Grant No.LMQYTSKT008)the Shenzhen Technical Plan Project(No.JCYJ20220818101003008)the support of High-Tech Industrialization Project of Tan Kah Kee Innovation Laboratory(Grant No.RD2021010101)the“Double-First Class”Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University.L.Zhang and Q.Zhang acknowledge the support of the Nanqiang Young Top-notch Talent Fellowship at Xiamen University.
文摘Silicon(Si)-based solid-state batteries(Si-SSBs)are attracting tremendous attention because of their high energy density and unprecedented safety,making them become promising candidates for next-generation energy storage systems.Nevertheless,the commercialization of Si-SSBs is significantly impeded by enormous challenges including large volume variation,severe interfacial problems,elusive fundamental mechanisms,and unsatisfied electrochemical performance.Besides,some unknown electrochemical processes in Si-based anode,solid-state electrolytes(SSEs),and Si-based anode/SSE interfaces are still needed to be explored,while an in-depth understanding of solid–solid interfacial chemistry is insufficient in Si-SSBs.This review aims to summarize the current scientific and technological advances and insights into tackling challenges to promote the deployment of Si-SSBs.First,the differences between various conventional liquid electrolyte-dominated Si-based lithium-ion batteries(LIBs)with Si-SSBs are discussed.Subsequently,the interfacial mechanical contact model,chemical reaction properties,and charge transfer kinetics(mechanical–chemical kinetics)between Si-based anode and three different SSEs(inorganic(oxides)SSEs,organic–inorganic composite SSEs,and inorganic(sulfides)SSEs)are systemically reviewed,respectively.Moreover,the progress for promising inorganic(sulfides)SSE-based Si-SSBs on the aspects of electrode constitution,three-dimensional structured electrodes,and external stack pressure is highlighted,respectively.Finally,future research directions and prospects in the development of Si-SSBs are proposed.
基金Project supported by the National Natural Science Foundation of China(61705228,21507129)the Natural Science Foundation of Fujian ProvinceChina(2019J05159)。
文摘The near-infrared(NIR)persistent luminescence materials(PLMs)can remain long-lasting luminescence after removal of the excitation light,which permits bioimaging with high sensitivity owing to the absence of background fluorescence interference from in situ excitation.Recently,the NIR PLMs have aroused intensive research interest in bioimaging.However,the optimal excitation wavelength of current NIR PLMs is located in the ultraviolet region with shallow tissue penetration,making it difficult to activate effectively in vivo,and seriously hindering their further application in bioimaging.Herein,we report a novel kind of Cr^(3+)ions and Y^(3+)ions co-doped NIR PLM,Zn_(1.3)Ga_(1.4)Sn_(0.3)O_(4):Cr^(3+),Y^(3+)(ZGSCY),which emits NIR persistent luminescence at 696 nm.Compared with Zn_(1.3)Ga_(1.4)Sn_(0.3)O_(4):Cr^(3+)(ZGSC)excited by the light with a wavelength in the biological window(>650 nm),after being co-doped with Y^(3+)ions,the NIR persistent luminescence performance of ZGSCY is significantly improved because of the increase of trap concentration in the matrix.In addition,we synthesized ZGSCY nanoparticles(NPs)by the combustion method,which exhibit excellent optical properties after being excited by the light with a wavelength in the biological window.After surface modification with PEG,the ZGSCY NPs present low cytotoxicity.Notably,due to the co-doping of Y^(3+)ions,the signal-to-noise ratio(SNR)of ZGSCY NPs in vivo imaging is about 1.8 times higher than that of the ZGSC NPs.Furthermore,the rechargeable in vivo imaging and passive tumor-targeted imaging are successfully achieved by activating with a lightemitting diode(LED,659 nm)after intravenous injection of ZGSCY.Thus,this kind of NIR PLM with high excitation efficiency performance in the biological window is expected to promote its biomedical application in deep tissues.
基金Project supported by National Natural Science Foundation of China(61705228,21507129)Natural Science Foundation of Fujian Province,China(2019J05159)。
文摘In very recent years,ultraviolet(UV)persistent luminescent materials(PLMs)have attracted widespread attention due to their potential biological applications.However,owing to the lack of suitable emitters and hosts,the design and development of excellent UV PLMs remain challenging.Here,we report a new Gd-based PLM NaGdGeO_(4):Bi^(3+)with super-long UVA persistent luminescence(PersL).By further codoping Li^(+)ions to increase the concentration of traps,the UVA PersL intensity of NaGdGeO_(4):Bi^(3+)is increased by 5.5 times.The optimal NaGdGeO_(4):Bi^(3+),Li^(+)exhibits excellent UVA PersL and can persist for more than 200 h.Moreover,the phosphor NaGdGeO_(4):Bi^(3+),Li^(+)also exhibits photostimulated property with a red LED or NIR laser excitation after the long-term decay,and can be activated by X-ray.This promising Gd-based UVA PLM is expected to have potential applications in biomedicine through triggering photocatalysts or photosensitizers by its UVA PersL to achieve photodynamic therapy and its potential ability of magnetic resonance(MR)imaging due to Gd^(3+)ions as MR imaging probe contained in the host NaGdGeO_(4).
基金Project supported by the National Natural Science Foundation of China(11974013,51802137)the State Key Research Projects of Shandong Natural Science Foundation(ZR2020KB019)+1 种基金the fund of"Two-Hundred Talent"plan of Yantai CityMajor Basic Research Projects of Shandong Natural Science Foundation(ZR2020ZD36)。
文摘A yellow emitting long afterglow luminescence material SrSc_(2)O_(4):Pr^(3+)was successfully prepared by solid state reaction method.SrSc_(2)O_(4):Pr^(3+)phosphor shows a long afterglow luminescence peak at about 495,545,621,630 and 657 nm,respectively,corresponding to the f–f transitions of Pr^(3+).The afterglow chromaticity coordinates of SrSc_(2)O_(4):1 at%Pr^(3+)were calculated to be(0.35,0.41),indicating that the afterglow emission is close to the light of yellow region.And,the afterglow luminescence of the optimal sample doped by 1 at%Pr^(3+)can persist for over 3 h.The thermoluminescence results suggest that there are three types of traps with depth of 0.61,0.69 and 0.78 eV exiting for all the samples,which are produced by the addition of Pr^(3+)ions.The trap density of SrSc_(2)O_(4):1 at%Pr^(3+)is the maximum when the incorporation of Pr^(3+)ions reaches 1 at%,which thus results in the longest afterglow luminescence.All the results indicate that SrSc_(2)O_(4):Pr^(3+)can be a potential candidate of novel long afterglow phosphors.
基金supported jointly by the National Key R&D Program project of China[grant number 2017YFF0211704]the National Natural Science Foundation of China[grant number41761144054]
文摘The greenhouse gas (GHG) footprint of an agricultural system is a measure of the climate change impact potential (CCIP) exerted by the formation of its product(s), its accurate quantification is essential for determining the green value added tax of agricultural products for food markets, which in turn may drastically change the current patterns of food consumption and production towards a product life cycle oriented economy. This paper reviews the literature regarding GHG footprints of crop cultivation systems.The review concludes that few studies have fully considered the categories/ items of net GHG emissions from an investigated crop cultivation system, and thus probably led to biases in footprint estimation. Most studies to date have even neglected changes in the soil organic carbon stocks of ecosystems with annual crops, while process-oriented biogeochemical models so far have seldom been involved in GHG footprint quantification.To help with solving these problems or drawbacks, the authors propose a generic methodological framework for quantifying GHG footprints of crop cultivation systems free from grazing, which takes into account all direct/indirect GHG contributors within a 'cradle-to-gate' life cycle. The authors then provide example values of some GHG emission factors, such as those from machinery operations and other agricultural inputs, extracted from the literature. In addition, direct measurements or model simulations of other major on-farm emission factors are emphasized. The need to further update this methodological framework in future studies, especially by adapting it to mixed crop-livestock production systems, is also indicated.