蓄电池的荷电状态(state of charge,SOC)是表征电池当前剩余电量的重要参数。提出一种基于神经网络和主从式自适应无迹卡尔曼滤波(masterslaveadaptiveunscented Kalmanfilter,MS-UKF)算法的SOC估计方法。首先,建立蓄电池的戴维南(Theve...蓄电池的荷电状态(state of charge,SOC)是表征电池当前剩余电量的重要参数。提出一种基于神经网络和主从式自适应无迹卡尔曼滤波(masterslaveadaptiveunscented Kalmanfilter,MS-UKF)算法的SOC估计方法。首先,建立蓄电池的戴维南(Thevenin)二阶模型,针对开路电压与电池SOC之间的非线性关系,采用神经网络模型代替多项式模型,以提高拟合精度。根据实时测量数据,基于最小二乘法在线确定电池模型的参数。针对传统的扩展卡尔曼滤波(extendedKalmanfilter,EKF)和无迹卡尔曼滤波(unscented Kalman filter,UKF)方法存在噪声方差固定,会产生误差造成估计精度不高的问题,采用MS-AUKF算法。该算法的主滤波器用来估计系统状态,辅助滤波器用来估计噪声方差矩阵。算法每次迭代时更新系统模型的噪声方差,克服了传统卡尔曼滤波算法中,噪声方差初值人为设定可能导致滤波发散的缺点。仿真结果表明,相比于EKF、UKF算法,MSAUKF在估计电池SOC时具有更高的精确度和收敛速度。展开更多