We present experimental observations of soliton pulsations in the net normal-dispersion fiber laser by using the dispersive Fourier transform(DFT) technique. According to the pulsating characteristics, the soliton pul...We present experimental observations of soliton pulsations in the net normal-dispersion fiber laser by using the dispersive Fourier transform(DFT) technique. According to the pulsating characteristics, the soliton pulsations are classified as visible and invisible soliton pulsations. The visible soliton pulsation is converted from single-into dual-soliton pulsation with the common characteristics of energy oscillation and bandwidth breathing. The invisible soliton pulsation undergoes periodic variation in the spectral profile and peak power but remains invariable in pulse energy. The reason for invisible soliton pulsation behavior is periodic oscillation of the pulse inside the soliton molecule. These results could be helpful in deepening our understanding of the soliton pulsation phenomena.展开更多
Gamma-emitting radionuclide ^(99m)Tc is globally used for the diagnosis of various pathological conditions owing to its ideal single-photon emission computed tomography (SPECT) characteristics.However,the short half-l...Gamma-emitting radionuclide ^(99m)Tc is globally used for the diagnosis of various pathological conditions owing to its ideal single-photon emission computed tomography (SPECT) characteristics.However,the short half-life of ^(99m)Tc (T_(1/2)=6 h)makes it difficult to store or transport.Thus,the production of ^(99m)Tc is tied to its parent radionuclide ^(99)Mo (T_(1/2)=66 h).The major production paths are based on accelerators and research reactors.The reactor process presents the potential for nuclear proliferation owing to its use of highly enriched uranium (HEU).Accelerator-based methods tend to use deuterium–tritium(D–T) neutron sources but are hindered by the high cost of tritium and its challenging operation.In this study,a new ^(99)Mo production design was developed based on a deuterium–deuterium (D–D) gas dynamic trap fusion neutron source (GDT-FNS) and a subcritical blanket system (SBS) assembly with a low-enriched uranium (LEU) solution.GDT-FNS can provide a relatively high-neutron intensity,which is one of the advantages of ^(99)Mo production.We provide a Monte Carlo-based neutronics analysis covering the calculation of the subcritical multiplication factor (k_(s)) of the SBS,optimization design for the reflector,shielding layer,and ^(99)Mo production capacity.Other calculations,including the neutron flux and nuclear heating distributions,are also provided for an overall evaluation of the production system.The results demonstrated that the SBS meets the nuclear critical safety design requirement (k_(s)<0.97) and maintained a high ^(99)Mo production capacity.The proposed system can generate approximately 157 Ci ^(99)Mo for a stable 24 h operation with a neutron intensity of 1×10^(14) n/s,which can meet 50%of China’s demand in 2025.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41875040)the Natural Science Foundation of Anhui Province, China (Grant No. 2008085MF211)+1 种基金the Foundation for Young Talents in College of Anhui Province, China (Grant No. gxyqZD2019034)the Innovation Fund for Postgraduates of Huaibei Normal University, China (Grant No. CX2022035)。
文摘We present experimental observations of soliton pulsations in the net normal-dispersion fiber laser by using the dispersive Fourier transform(DFT) technique. According to the pulsating characteristics, the soliton pulsations are classified as visible and invisible soliton pulsations. The visible soliton pulsation is converted from single-into dual-soliton pulsation with the common characteristics of energy oscillation and bandwidth breathing. The invisible soliton pulsation undergoes periodic variation in the spectral profile and peak power but remains invariable in pulse energy. The reason for invisible soliton pulsation behavior is periodic oscillation of the pulse inside the soliton molecule. These results could be helpful in deepening our understanding of the soliton pulsation phenomena.
基金supported by Anhui Provincial Key R&D Program (202104g0102007)Hefei Municipal Natural Science Foundation (2022011)+2 种基金Collaborative Innovation Program of Hefei Science CenterChinese Academy of Sciences(2022HSC CIP024)International Partnership Program of Chinese Academy of Sciences (116134KYSB20200001)。
文摘Gamma-emitting radionuclide ^(99m)Tc is globally used for the diagnosis of various pathological conditions owing to its ideal single-photon emission computed tomography (SPECT) characteristics.However,the short half-life of ^(99m)Tc (T_(1/2)=6 h)makes it difficult to store or transport.Thus,the production of ^(99m)Tc is tied to its parent radionuclide ^(99)Mo (T_(1/2)=66 h).The major production paths are based on accelerators and research reactors.The reactor process presents the potential for nuclear proliferation owing to its use of highly enriched uranium (HEU).Accelerator-based methods tend to use deuterium–tritium(D–T) neutron sources but are hindered by the high cost of tritium and its challenging operation.In this study,a new ^(99)Mo production design was developed based on a deuterium–deuterium (D–D) gas dynamic trap fusion neutron source (GDT-FNS) and a subcritical blanket system (SBS) assembly with a low-enriched uranium (LEU) solution.GDT-FNS can provide a relatively high-neutron intensity,which is one of the advantages of ^(99)Mo production.We provide a Monte Carlo-based neutronics analysis covering the calculation of the subcritical multiplication factor (k_(s)) of the SBS,optimization design for the reflector,shielding layer,and ^(99)Mo production capacity.Other calculations,including the neutron flux and nuclear heating distributions,are also provided for an overall evaluation of the production system.The results demonstrated that the SBS meets the nuclear critical safety design requirement (k_(s)<0.97) and maintained a high ^(99)Mo production capacity.The proposed system can generate approximately 157 Ci ^(99)Mo for a stable 24 h operation with a neutron intensity of 1×10^(14) n/s,which can meet 50%of China’s demand in 2025.