Nonreciprocal effects are consistently observed in noncentrosymmetric materials due to the intrinsic symmetry breaking and in high-conductivity systems due to the extrinsic thermoelectric effect. Meanwhile, nonrecipro...Nonreciprocal effects are consistently observed in noncentrosymmetric materials due to the intrinsic symmetry breaking and in high-conductivity systems due to the extrinsic thermoelectric effect. Meanwhile, nonreciprocal charge transport is widely utilized as an effective experimental technique for detecting intrinsic unidirectional electrical contributions. Here, we show an unconventional nonreciprocal voltage transition in topological insulator Ag_(2)Te nanobelts. The nonreciprocal voltage develops from nearly zero to giant values under the applied current I_(ac) and external magnetic fields, while remaining unchanged under various current I_(dc). This unidirectional electrical contribution is further evidenced by the differential resistance(dV/dI) measurements. Furthermore, the transition possesses two-dimensional properties under a tilted magnetic field and occurs when the voltage between two electrodes exceeds a certain value. We propose a possible mechanism based on the development of edge channels in Ag_(2)Te nanobelts to interpret the phenomenon. Our results not only introduce a peculiar nonreciprocal voltage transition in topological materials but also enrich the understanding of the intrinsic mechanism that strongly affects nonreciprocal charge transport.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 52225207, 11934005, and 52350001)the Shanghai Pilot Program for Basic Research-FuDan University21TQ1400100 (Grant No. 21TQ006)the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01)。
文摘Nonreciprocal effects are consistently observed in noncentrosymmetric materials due to the intrinsic symmetry breaking and in high-conductivity systems due to the extrinsic thermoelectric effect. Meanwhile, nonreciprocal charge transport is widely utilized as an effective experimental technique for detecting intrinsic unidirectional electrical contributions. Here, we show an unconventional nonreciprocal voltage transition in topological insulator Ag_(2)Te nanobelts. The nonreciprocal voltage develops from nearly zero to giant values under the applied current I_(ac) and external magnetic fields, while remaining unchanged under various current I_(dc). This unidirectional electrical contribution is further evidenced by the differential resistance(dV/dI) measurements. Furthermore, the transition possesses two-dimensional properties under a tilted magnetic field and occurs when the voltage between two electrodes exceeds a certain value. We propose a possible mechanism based on the development of edge channels in Ag_(2)Te nanobelts to interpret the phenomenon. Our results not only introduce a peculiar nonreciprocal voltage transition in topological materials but also enrich the understanding of the intrinsic mechanism that strongly affects nonreciprocal charge transport.