Person re-identification (re-id) on robot platform is an important application for human-robot- interaction (HRI), which aims at making the robot recognize the around persons in varying scenes. Although many effec...Person re-identification (re-id) on robot platform is an important application for human-robot- interaction (HRI), which aims at making the robot recognize the around persons in varying scenes. Although many effective methods have been proposed for surveillance re-id in recent years, re-id on robot platform is still a novel unsolved problem. Most existing methods adapt the supervised metric learning offline to improve the accuracy. However, these methods can not adapt to unknown scenes. To solve this problem, an online re-id framework is proposed. Considering that robotics can afford to use high-resolution RGB-D sensors and clear human face may be captured, face information is used to update the metric model. Firstly, the metric model is pre-trained offline using labeled data. Then during the online stage, we use face information to mine incorrect body matching pairs which are collected to update the metric model online. In addition, to make full use of both appearance and skeleton information provided by RGB-D sensors, a novel feature funnel model (FFM) is proposed. Comparison studies show our approach is more effective and adaptable to varying environments.展开更多
基金This work is supported by the National Natural Science Foundation of China (NSFC, nos. 61340046), the National High Technology Research and Development Programme of China (863 Programme, no. 2006AA04Z247), the Scientific and Technical Innovation Commission of Shenzhen Municipality (nos. JCYJ20130331144631730), and the Specialized Research Fund for the Doctoral Programme of Higher Education (SRFDP, no. 20130001110011).
文摘Person re-identification (re-id) on robot platform is an important application for human-robot- interaction (HRI), which aims at making the robot recognize the around persons in varying scenes. Although many effective methods have been proposed for surveillance re-id in recent years, re-id on robot platform is still a novel unsolved problem. Most existing methods adapt the supervised metric learning offline to improve the accuracy. However, these methods can not adapt to unknown scenes. To solve this problem, an online re-id framework is proposed. Considering that robotics can afford to use high-resolution RGB-D sensors and clear human face may be captured, face information is used to update the metric model. Firstly, the metric model is pre-trained offline using labeled data. Then during the online stage, we use face information to mine incorrect body matching pairs which are collected to update the metric model online. In addition, to make full use of both appearance and skeleton information provided by RGB-D sensors, a novel feature funnel model (FFM) is proposed. Comparison studies show our approach is more effective and adaptable to varying environments.
基金supported by the Beijing Municipal Government grant(Beijing Laboratory of Oral Health,PXM2021-014226000041)the Beijing Municipal Science and Technology Commission(Z181100001718208)+7 种基金the Beijing Municipal Education Commission(119207020201)the Innovation Research Team Project of Beijing Stomatological Hospital,Capital Medical University(CXTD202201)the Chinese Research Unit of Tooth Development and Regeneration,Academy of Medical Sciences(2019-12M-5031)the National Natural Science Foundation of China(92049201,82030031,81991504,and 92149301)the Beijing Advanced Innovation Center for Big Data-based Precision Medicine(PXM2021_014226_000026)the Beijing Municipal Government(Beijing Scholar Program,PXM2020_014226_000005 and PXM2021_014226_000020)the Beijing Municipal Colleges and Universities High Level Talents Introduction and Cultivate Project-Beijing Great Wall Scholar Program(CIT&TCD 20180332)the National Key Research and development Program(2022YFA1104401)。