摘要
Person re-identification (re-id) on robot platform is an important application for human-robot- interaction (HRI), which aims at making the robot recognize the around persons in varying scenes. Although many effective methods have been proposed for surveillance re-id in recent years, re-id on robot platform is still a novel unsolved problem. Most existing methods adapt the supervised metric learning offline to improve the accuracy. However, these methods can not adapt to unknown scenes. To solve this problem, an online re-id framework is proposed. Considering that robotics can afford to use high-resolution RGB-D sensors and clear human face may be captured, face information is used to update the metric model. Firstly, the metric model is pre-trained offline using labeled data. Then during the online stage, we use face information to mine incorrect body matching pairs which are collected to update the metric model online. In addition, to make full use of both appearance and skeleton information provided by RGB-D sensors, a novel feature funnel model (FFM) is proposed. Comparison studies show our approach is more effective and adaptable to varying environments.
作者
Hong Liu
Liang Hu
Liclian Ma
Hong Liu;Liang Hu;Liclian Ma(The Engineering Lab on Intelligent Perception for lnternet of Things (ELIP), Shenzhen Graduate School, Peking University, Shenzhen, 518055, China;The VISICS, ESAT, KU Leuven, Kasteelpark Arenberg 10, Heverlee, 3001, Belgium)
基金
This work is supported by the National Natural Science Foundation of China (NSFC, nos. 61340046), the National High Technology Research and Development Programme of China (863 Programme, no. 2006AA04Z247), the Scientific and Technical Innovation Commission of Shenzhen Municipality (nos. JCYJ20130331144631730), and the Specialized Research Fund for the Doctoral Programme of Higher Education (SRFDP, no. 20130001110011).