期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
新格赖斯理论与社会语用学 被引量:3
1
作者 k.turner 陈雪芬 《当代语言学》 CSSCI 北大核心 2004年第3期257-264,共8页
社会语用学 ,跟其他语用学理论一样 ,都要研究意义。它的特点是强调语言使用者的社会属性对于意义的产生和理解的影响。社会语用学批评格赖斯 ,认为他过于注重交际意图对于意义的产生和理解的作用 ,忽视他们所关注的语言使用者的社会属... 社会语用学 ,跟其他语用学理论一样 ,都要研究意义。它的特点是强调语言使用者的社会属性对于意义的产生和理解的影响。社会语用学批评格赖斯 ,认为他过于注重交际意图对于意义的产生和理解的作用 ,忽视他们所关注的语言使用者的社会属性及其作用。本文就社会语用学对格赖斯的一些批评进行评价 ,认为这些批评是基于对格赖斯的错误理解。 展开更多
关键词 社会语用学 新格赖斯理论 合作原则 语义学
原文传递
Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics 被引量:2
2
作者 W.WU M.DANEkER +2 位作者 M.A.JOLLEY k.T.turner L.LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1039-1068,共30页
Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the ch... Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the characteristic of the material is highly nonlinear in nature,as is common in biological tissue.In this work,we identify unknown material properties in continuum solid mechanics via physics-informed neural networks(PINNs).To improve the accuracy and efficiency of PINNs,we develop efficient strategies to nonuniformly sample observational data.We also investigate different approaches to enforce Dirichlet-type boundary conditions(BCs)as soft or hard constraints.Finally,we apply the proposed methods to a diverse set of time-dependent and time-independent solid mechanic examples that span linear elastic and hyperelastic material space.The estimated material parameters achieve relative errors of less than 1%.As such,this work is relevant to diverse applications,including optimizing structural integrity and developing novel materials. 展开更多
关键词 solid mechanics material identification physics-informed neural network(PINN) data sampling boundary condition(BC)constraint
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部