In the present research work, we have obtained the exact spherical symmetric solutions of Heisenberg-Ivanenko nonlinear spinor field equations in the Gravitational Theory. The nonlinearity in the spinor Lagrangian is ...In the present research work, we have obtained the exact spherical symmetric solutions of Heisenberg-Ivanenko nonlinear spinor field equations in the Gravitational Theory. The nonlinearity in the spinor Lagrangian is given by an arbitrary function which depends on the invariant generated from the bilinear spinor form <em>I<sub>s</sub></em><sub> </sub>= <em>S</em><sup>2</sup>. We admit the static spherical symmetric metric. It is shown that a soliton-like configuration has a localized energy density and a finite total energy. In addition, The total charge and total spin are also finite. Role of the metric<em> i.e.</em> the proper gravitational field of elementary particles in the formation of the field configurations with limited total energy, spin and charge has been examined by solving the field equations in flat space-time. It has been established that the obtained solutions are soliton-like configuration with bounded energy density and finite total energy. In order to clarify the role of the nonlinearity in this model, we have obtained exact statical symmetric solutions to the above spinor field equations in the linear case corresponding to Dirac’s linear equation. It is proved that soliton-like solutions are absent.展开更多
This research work is related to soliton solutions considered as models that can describe the complex configuration of elementary particles from the study of the interactions of their fields. It is interested in the i...This research work is related to soliton solutions considered as models that can describe the complex configuration of elementary particles from the study of the interactions of their fields. It is interested in the interaction of fields between two different elementary particles by expressing their physical properties. For that, we have obtained, exact static plane symmetric soliton-like solutions to the nonlinear equations of interacting electromagnetic and scalar fields taking into account the own gravitational field of elementary particles using the calibrated invariance function <i>P</i>(<i>I</i>). It has been proved that all solutions of the Einstein, nonlinear electromagnetic and scalar field equations are regular with the localized energy density. Moreover, the total charge of particles is finite and the total energy of the interaction fields is bounded. It have been emphasized the importance to the own gravitational field of elementary particles and the role of the nonlinearity of fields in the determination of these solutions. In flat space-time, soliton-like solutions exist but the total energy of the interaction fields is equal to zero. We have also shown that in the linear case, soliton-like solutions are absent.展开更多
In this paper, we have used the static spherical symmetric metric. The parameter of the nonlinearity fields is included in the arbitrary function characterizing the interaction between the electromagnetic and scalar f...In this paper, we have used the static spherical symmetric metric. The parameter of the nonlinearity fields is included in the arbitrary function characterizing the interaction between the electromagnetic and scalar fields. Taking into account the own gravitational field of elementary particles, we have obtained exact static spherical symmetric solutions to the electromagnetic and scalar field equations of nonlinear induction. Considering all forms of the solution of Liouville equation, we proved that the metric functions are regular with localized energy density. Moreover, the total energy of the nonlinear induction fields is bounded and the total charge of the elementary particles has a finite value (soliton-like). In the flat space-time, soliton-like solutions exist.展开更多
The present research work deals with an extension of a previous work entitled [Exact Soliton-like spherical symmetric solutions of the Heisenberg-Ivanenko type nonlinear spinor field equation in gravitational theory, ...The present research work deals with an extension of a previous work entitled [Exact Soliton-like spherical symmetric solutions of the Heisenberg-Ivanenko type nonlinear spinor field equation in gravitational theory, Journal of Applied Mathematics and Physics, 2020, 8, 1236-1254] to Analytical Soliton-Like Solutions to Nonlinear Dirac Equation of Spinor Field in Spherical Symmetric Metric. The nonlinear terms in the Lagrangian density are functions of the invariant <img src="Edit_f8bf864e-8dfd-42d9-82fc-76b8c18997cc.png" alt="" />. Equations with power and polynomial nonlinearities are thoroughly scrutinized. It is shown that soliton is responsible for the deformation in the metric and hence in the geometry as well as gravitational field. The role of nonlinearity and the influence of the proper gravitational field of the elementary particles are also examined. The consideration of the nonlinear terms in the spinor Lagrangian, the own gravitational field of elementary particles and the geometrical properties of the metric are necessary and sufficient conditions in order to obtain soliton-like solutions with total charge and total spin in general relativity.展开更多
The concept of soliton as regular localized stable solutions of nonlinear differential equations is being widely utilized in pure science for various aims. In present analysis, the soliton concept is used as a model i...The concept of soliton as regular localized stable solutions of nonlinear differential equations is being widely utilized in pure science for various aims. In present analysis, the soliton concept is used as a model in order to describe the configurations of elementary particles in general relativity. To this end, our study deals with the spherical symmetric solitons of interacting Spinor, Scalar and Gravitational Fields in General Relativity. Thus, exact spherical symmetric general solutions to the interaction of spinor, scalar and gravitational field equations have been obtained. The Einstein equations have been transformed into a Liouville equation type and solved. Let us emphasize that these solutions are regular with localized energy density and finite total energy. In addition, the total charge and spin are limited. Moreover, the obtained solutions are soliton-like solutions. These solutions can be used in order to describe the configurations of elementary particles.展开更多
文摘In the present research work, we have obtained the exact spherical symmetric solutions of Heisenberg-Ivanenko nonlinear spinor field equations in the Gravitational Theory. The nonlinearity in the spinor Lagrangian is given by an arbitrary function which depends on the invariant generated from the bilinear spinor form <em>I<sub>s</sub></em><sub> </sub>= <em>S</em><sup>2</sup>. We admit the static spherical symmetric metric. It is shown that a soliton-like configuration has a localized energy density and a finite total energy. In addition, The total charge and total spin are also finite. Role of the metric<em> i.e.</em> the proper gravitational field of elementary particles in the formation of the field configurations with limited total energy, spin and charge has been examined by solving the field equations in flat space-time. It has been established that the obtained solutions are soliton-like configuration with bounded energy density and finite total energy. In order to clarify the role of the nonlinearity in this model, we have obtained exact statical symmetric solutions to the above spinor field equations in the linear case corresponding to Dirac’s linear equation. It is proved that soliton-like solutions are absent.
文摘This research work is related to soliton solutions considered as models that can describe the complex configuration of elementary particles from the study of the interactions of their fields. It is interested in the interaction of fields between two different elementary particles by expressing their physical properties. For that, we have obtained, exact static plane symmetric soliton-like solutions to the nonlinear equations of interacting electromagnetic and scalar fields taking into account the own gravitational field of elementary particles using the calibrated invariance function <i>P</i>(<i>I</i>). It has been proved that all solutions of the Einstein, nonlinear electromagnetic and scalar field equations are regular with the localized energy density. Moreover, the total charge of particles is finite and the total energy of the interaction fields is bounded. It have been emphasized the importance to the own gravitational field of elementary particles and the role of the nonlinearity of fields in the determination of these solutions. In flat space-time, soliton-like solutions exist but the total energy of the interaction fields is equal to zero. We have also shown that in the linear case, soliton-like solutions are absent.
文摘In this paper, we have used the static spherical symmetric metric. The parameter of the nonlinearity fields is included in the arbitrary function characterizing the interaction between the electromagnetic and scalar fields. Taking into account the own gravitational field of elementary particles, we have obtained exact static spherical symmetric solutions to the electromagnetic and scalar field equations of nonlinear induction. Considering all forms of the solution of Liouville equation, we proved that the metric functions are regular with localized energy density. Moreover, the total energy of the nonlinear induction fields is bounded and the total charge of the elementary particles has a finite value (soliton-like). In the flat space-time, soliton-like solutions exist.
文摘The present research work deals with an extension of a previous work entitled [Exact Soliton-like spherical symmetric solutions of the Heisenberg-Ivanenko type nonlinear spinor field equation in gravitational theory, Journal of Applied Mathematics and Physics, 2020, 8, 1236-1254] to Analytical Soliton-Like Solutions to Nonlinear Dirac Equation of Spinor Field in Spherical Symmetric Metric. The nonlinear terms in the Lagrangian density are functions of the invariant <img src="Edit_f8bf864e-8dfd-42d9-82fc-76b8c18997cc.png" alt="" />. Equations with power and polynomial nonlinearities are thoroughly scrutinized. It is shown that soliton is responsible for the deformation in the metric and hence in the geometry as well as gravitational field. The role of nonlinearity and the influence of the proper gravitational field of the elementary particles are also examined. The consideration of the nonlinear terms in the spinor Lagrangian, the own gravitational field of elementary particles and the geometrical properties of the metric are necessary and sufficient conditions in order to obtain soliton-like solutions with total charge and total spin in general relativity.
文摘The concept of soliton as regular localized stable solutions of nonlinear differential equations is being widely utilized in pure science for various aims. In present analysis, the soliton concept is used as a model in order to describe the configurations of elementary particles in general relativity. To this end, our study deals with the spherical symmetric solitons of interacting Spinor, Scalar and Gravitational Fields in General Relativity. Thus, exact spherical symmetric general solutions to the interaction of spinor, scalar and gravitational field equations have been obtained. The Einstein equations have been transformed into a Liouville equation type and solved. Let us emphasize that these solutions are regular with localized energy density and finite total energy. In addition, the total charge and spin are limited. Moreover, the obtained solutions are soliton-like solutions. These solutions can be used in order to describe the configurations of elementary particles.