A^(6)Li(^(16)O,^(19)Ne^(∗))^(3)H multi-nucleon transfer-reaction experiment was performed to populate the highly excited states in^(19)Ne.The subsequent decay particles,^(4)He or protons from the^(19)Ne resonant state...A^(6)Li(^(16)O,^(19)Ne^(∗))^(3)H multi-nucleon transfer-reaction experiment was performed to populate the highly excited states in^(19)Ne.The subsequent decay particles,^(4)He or protons from the^(19)Ne resonant states,were detected in coincidence with the recoil 3 H.The excitation-energy spectra of^(19)Ne were reconstructed using the detected proton or^(4)He and the deduced^(18)F or^(15)O data,respectively.A broad resonance at about 7.85 MeV(1/2^(+))was observed,with partial decay widths different from the previously reported values,which may have a significant impact on the destruction of 18 F in astrophysical processes.Several resonances up to very high excitation energies have been identified with a largeα-clustering strength,which confirm the formation of the cluster structure with a one-hole configuration in light nuclei and encourage further systematic studies of the cluster structure in^(19)Ne.展开更多
A transfer reaction and cluster-decay experiment,12C(16O,24Mg→ α+20Ne)α, was performed at a beam energy of 96 MeV. Both recoil and decay α particles were detected in coincidence, allowing us to deduce the energymo...A transfer reaction and cluster-decay experiment,12C(16O,24Mg→ α+20Ne)α, was performed at a beam energy of 96 MeV. Both recoil and decay α particles were detected in coincidence, allowing us to deduce the energymomentum of a20Ne fragment. A number of resonant states of24Mg were reconstructed up to an excitation energy of approximately 30 MeV. Owing to the experimentally achieved excellent resolutions of the Q-value and excitationenergy spectra, the relative decay widths for each resonant state in24Mg to various final states of20Ne were extracted, along with the total decay width. The obtained results provide good testing ground for theoretical descriptions of multiple clustering configurations in24Mg.展开更多
A method to improve the surge current capability of silicon carbide(SiC)merged PiN Schottky(MPS)diodes is presented and investigated via three-dimensional electro-thermal simulations.When compared with a conventional ...A method to improve the surge current capability of silicon carbide(SiC)merged PiN Schottky(MPS)diodes is presented and investigated via three-dimensional electro-thermal simulations.When compared with a conventional MPS diode,the proposed structure has a more uniform current distribution during bipolar conduction due to the help of the continuous P+surface,which can avoid the formation of local hotspots during the surge process.The Silvaco simulation results show that the proposed structure has a 20.29%higher surge capability and a 15.06%higher surge energy compared with a conventional MPS diode.The bipolar on-state voltage of the proposed structure is 4.69 V,which is 56.29%lower than that of a conventional MPS diode,enabling the device to enter the bipolar mode earlier during the surge process.Furthermore,the proposed structure can suppress the occurrence of‘snapback'phenomena when switching from the unipolar to the bipolar operation mode.In addition,an analysis of the surge process of MPS diodes is carried out in detail.展开更多
基金Supported by the National Key R&D Program of China(2018YFA0404403,2022YFA1602302)the National Natural Science Foundation of China(11875074,11875073,12235020,12027809,11961141003,U1967201,U2167204,11775004,11775003)+2 种基金the Continuous Basic Scientific Research Project(WDJC-2019-13)the State Key Laboratory of Nuclear Physics and Technology,Peking University(NPT2020KFY10)the Leading Innovation Project(LC192209000701,LC202309000201)。
文摘A^(6)Li(^(16)O,^(19)Ne^(∗))^(3)H multi-nucleon transfer-reaction experiment was performed to populate the highly excited states in^(19)Ne.The subsequent decay particles,^(4)He or protons from the^(19)Ne resonant states,were detected in coincidence with the recoil 3 H.The excitation-energy spectra of^(19)Ne were reconstructed using the detected proton or^(4)He and the deduced^(18)F or^(15)O data,respectively.A broad resonance at about 7.85 MeV(1/2^(+))was observed,with partial decay widths different from the previously reported values,which may have a significant impact on the destruction of 18 F in astrophysical processes.Several resonances up to very high excitation energies have been identified with a largeα-clustering strength,which confirm the formation of the cluster structure with a one-hole configuration in light nuclei and encourage further systematic studies of the cluster structure in^(19)Ne.
基金Supported by the National Key R&D Program of China (2018YFA0404403)the National Natural Science Foundation of China (11875074, 11875073, 12027809,11961141003, U1967201, 11775004, and 11775003)+1 种基金the Continuous Basic Scientific Research Project (WDJC-2019-13)the State Key Laboratory of Nuclear Physics and Technology,Peking University (NPT2020KFY10)。
文摘A transfer reaction and cluster-decay experiment,12C(16O,24Mg→ α+20Ne)α, was performed at a beam energy of 96 MeV. Both recoil and decay α particles were detected in coincidence, allowing us to deduce the energymomentum of a20Ne fragment. A number of resonant states of24Mg were reconstructed up to an excitation energy of approximately 30 MeV. Owing to the experimentally achieved excellent resolutions of the Q-value and excitationenergy spectra, the relative decay widths for each resonant state in24Mg to various final states of20Ne were extracted, along with the total decay width. The obtained results provide good testing ground for theoretical descriptions of multiple clustering configurations in24Mg.
基金the National Research and Development Program for Major Research Instruments of China(Grant No.62027814)the National Natural Science Foundation of China(Grant No.61904045)Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ20F040004)。
文摘A method to improve the surge current capability of silicon carbide(SiC)merged PiN Schottky(MPS)diodes is presented and investigated via three-dimensional electro-thermal simulations.When compared with a conventional MPS diode,the proposed structure has a more uniform current distribution during bipolar conduction due to the help of the continuous P+surface,which can avoid the formation of local hotspots during the surge process.The Silvaco simulation results show that the proposed structure has a 20.29%higher surge capability and a 15.06%higher surge energy compared with a conventional MPS diode.The bipolar on-state voltage of the proposed structure is 4.69 V,which is 56.29%lower than that of a conventional MPS diode,enabling the device to enter the bipolar mode earlier during the surge process.Furthermore,the proposed structure can suppress the occurrence of‘snapback'phenomena when switching from the unipolar to the bipolar operation mode.In addition,an analysis of the surge process of MPS diodes is carried out in detail.