The 2-hydroxy-4-methoxybenzyl(Hmb)backbone modification can prevent amide bond-mediated sidereactions(e.g.,aspartimide formation,peptide aggregation)by installing the removable Hmb group into a peptide bond,thus impro...The 2-hydroxy-4-methoxybenzyl(Hmb)backbone modification can prevent amide bond-mediated sidereactions(e.g.,aspartimide formation,peptide aggregation)by installing the removable Hmb group into a peptide bond,thus improving the synthesis of long and challenging peptides and proteins.However,its use is largely precluded by the limited Hmb’s installation sites.In this report,an improved installation of Hmb(iHmb)method was developed to achieve the flexible installation and the convenient removal of Hmb.The iHmb method involves two critical steps:(1)oxidative diazotization of the readily installed 2-hydroxy-4-methoxy-5-amino-benzyl(Hmab)to give 2-hydroxy-4-methoxy-5-diazonium-benzyl(Hmdab)by combining soamyl nitrite(IAN)/HBF_(4),and(2)reductive elimination of Hmdab to give the desired Hmb by 1,2-ethanedithiol(EDT).The iHmb method enables the installation of Hmb at any primary amino acid including the highly sterically hindered amino acids(e.g.,valine and isoleucine).The practicality and utility of the iHmb method was demonstrated by one-shot solid-phase synthesis of a challenging aspartimide-prone peptide,the mirror-image version of a hydrophobic peptide and a long-chain peptide up to 76-residue.Furthermore,the iHmb method can be utilized to facilitate chemical protein ligation,as exemplified by the synthesis of the single-spanning membrane protein sarcolipin.The iHmb method expands the toolkit for peptide synthesis and ligation and facilitates the preparation of peptides/proteins.展开更多
The central dogma of modern biology underscores the pivotal roles proteins play in diverse biological processes,the study of which necessitates advanced methods to produce proteins with precision and versatility.Chemi...The central dogma of modern biology underscores the pivotal roles proteins play in diverse biological processes,the study of which necessitates advanced methods to produce proteins with precision and versatility.Chemical protein synthesis,a powerful approach utilizing chemical reactions for the de novo construction of structurally accurate proteins,has emerged as a transformative tool for studying proteins and generating protein derivatives/mimics inaccessible by natural biological machinery,including post-translationally modified proteins,proteins comprised of unnatural amino acids,as well as mirror-image proteins.This review summarizes recent strides in synthetic method developments for chemical protein synthesis,including innovative techniques in solid-phase peptide synthesis,the challenges presented by difficult sequences in either synthesis or folding and the exploration of novel ligation reactions using both chemical and enzymatic methods.Furthermore,the review also delves into newly developed protocols for site-selective protein modifications and the generation of stapled or macrocyclized peptides/miniproteins,highlighting the power of chemical methods to make structurally diverse proteins.Recent applications of synthetic proteins in investigating post-translational modifications(phosphorylation,lipidation,glycosylation,ubiquitination,etc.),mirror-image biological processes and drug development are further discussed.Together,these topics provide a comprehensive overview of the current landscape of chemical protein synthesis.展开更多
As one of the most widely existing post-translational modification models, ubiquitination regulates diverse cellular activities. In eukaryotes, K-branched ubiquitin chains play key roles in cell cycle and protein qual...As one of the most widely existing post-translational modification models, ubiquitination regulates diverse cellular activities. In eukaryotes, K-branched ubiquitin chains play key roles in cell cycle and protein quality control. However, the structural and biochemical properties of K-branched ubiquitin chains have not been well examined. Here we employed the synthetic linkage-and length-defined K-branched ubiquitin chains to examine their binding and hydrolysis properties in vitro. Quantitatively affinity determination of ubiquitin chains to the proteasome ubiquitin receptor S5 a indicated that the S5 a exhibited preference binding to K-branched chains over K-linked chains, but not K-conjugated chains. In addition, deubiquitination experiments were carried out and the results showed that K-branched chains were preferably hydrolyzed by proteasome-associated deubiquitinase Rpnll than homotypic Kor K-linked chains.展开更多
Dear Editor,It is known that most of lives on the earth compose of homochiral molecules of L-amino acids and D-ribose nucleic acids.However,little is known why and how the life's chirality in such a way.Studies on...Dear Editor,It is known that most of lives on the earth compose of homochiral molecules of L-amino acids and D-ribose nucleic acids.However,little is known why and how the life's chirality in such a way.Studies on an artificial mirror-image life could strengthen our understanding of the question about the origin of life on the Earth and even elsewhere in the universe.Especially studies on mirror-image life would also have a plenty of vast application prospects in materials,energy and pharmaceutical sciences(Bohannon,2010).展开更多
D-peptides are recognized as a new class of synthetic chemical drugs and they possess many interesting advantages such as high enzymatic stability,improved oral bioavailability,as well as high binding affinity and spe...D-peptides are recognized as a new class of synthetic chemical drugs and they possess many interesting advantages such as high enzymatic stability,improved oral bioavailability,as well as high binding affinity and specificity.Recently,D-peptide drugs have been attracting increasing attention in both academic and industrial researches over recent years.One D-peptide etelcalcetide has even entered the market that targets the calcium(Ca2+)-sensing receptor(CaSR) to fight secondary hyperparathyroidism.Effective discovery and optimization of D-peptide ligands that can bind to various disease-related targets with high specificity and potency is of great importance for the development of D-peptide drugs.This review surveys the recent method development in this area especially the chemical protein synthesis-assisted high-throughput screening strategies for D-peptide ligands and their application in drug discovery.展开更多
A mirror-image protein-based information barcoding and storage technology wherein D-amino acids are used to encode information into mirror-image proteins that are chemically synthesized is described.These mirror-image...A mirror-image protein-based information barcoding and storage technology wherein D-amino acids are used to encode information into mirror-image proteins that are chemically synthesized is described.These mirror-image proteins were then fused into various materials from which information-encoded objects were produced.Subsequently,the mirror-image proteins were extracted from the objects using biotin-streptavidin resin-mediated specific enrichment and cleaved using an Ni(Ⅱ)-mediated selective peptide cleavage.Protein sequencing was accomplished using liquid chromatography/tandem mass spectrometry(LC-MS/MS)and then transcoded into the recorded information.We demonstrated the use of this technology to encode Chinese words into mirror-image proteins,which were then fused onto a poly(ethylene terephthalate)(PET)film and retrieved and decoded by LC-MS/MS sequencing.Compared to information barcoding and storage technologies using natural biopolymers,the mirrorimage biopolymers used in our technology may be more stable and durable.展开更多
Ubiquitination, a key and extensive posttranslational modification of proteins, has profound effects on a variety of physiological and pathological processes. The inherent complexity of ubiquitin conjugates makes it h...Ubiquitination, a key and extensive posttranslational modification of proteins, has profound effects on a variety of physiological and pathological processes. The inherent complexity of ubiquitin conjugates makes it highly challenging to study the functional and structural mechanisms of ubiquitination. To address these challenges, accesses to sufficient poly-ubiquitin chains or ubiquitinated proteins are urgently needed. Over the last decade, synthetic protein chemists have developed several novel peptide ligation methods for the preparation of ubiquitin conjugates with precise control over the atomic structure. In this review, we summarize the recent breakthroughs and potential challenges in the chemical synthesis and semi-synthesis of ubiquitin conjugates with respect to the preparation of poly-ubiquitin-based proteins and ubiquitin-based probes.展开更多
基金supported by the National Key Research and Development Program of China(No.2019YFA0706900)the National Natural Science Foundation of China(Nos.22022703 and 22177108)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP013).
文摘The 2-hydroxy-4-methoxybenzyl(Hmb)backbone modification can prevent amide bond-mediated sidereactions(e.g.,aspartimide formation,peptide aggregation)by installing the removable Hmb group into a peptide bond,thus improving the synthesis of long and challenging peptides and proteins.However,its use is largely precluded by the limited Hmb’s installation sites.In this report,an improved installation of Hmb(iHmb)method was developed to achieve the flexible installation and the convenient removal of Hmb.The iHmb method involves two critical steps:(1)oxidative diazotization of the readily installed 2-hydroxy-4-methoxy-5-amino-benzyl(Hmab)to give 2-hydroxy-4-methoxy-5-diazonium-benzyl(Hmdab)by combining soamyl nitrite(IAN)/HBF_(4),and(2)reductive elimination of Hmdab to give the desired Hmb by 1,2-ethanedithiol(EDT).The iHmb method enables the installation of Hmb at any primary amino acid including the highly sterically hindered amino acids(e.g.,valine and isoleucine).The practicality and utility of the iHmb method was demonstrated by one-shot solid-phase synthesis of a challenging aspartimide-prone peptide,the mirror-image version of a hydrophobic peptide and a long-chain peptide up to 76-residue.Furthermore,the iHmb method can be utilized to facilitate chemical protein ligation,as exemplified by the synthesis of the single-spanning membrane protein sarcolipin.The iHmb method expands the toolkit for peptide synthesis and ligation and facilitates the preparation of peptides/proteins.
基金supported by the National Key R&D Program of China(2022YFC3401500)the National Natural Science Foundation of China(22137005,92253302,22227810 to Lei Liu,22177004,92153301,22321005 to Suwei Dong,22277020 to Yiming Li,22022703,22177108,22377118 to Ji-Shen Zheng,92353302,22177059 to Yongxiang Chen,22177035 to Jun Guo,22277029,22077036 to Chunmao He,22077078 to Honggang Hu92353302,92053108 to Yanmei Li,22277015 to Junfeng Zhao)。
文摘The central dogma of modern biology underscores the pivotal roles proteins play in diverse biological processes,the study of which necessitates advanced methods to produce proteins with precision and versatility.Chemical protein synthesis,a powerful approach utilizing chemical reactions for the de novo construction of structurally accurate proteins,has emerged as a transformative tool for studying proteins and generating protein derivatives/mimics inaccessible by natural biological machinery,including post-translationally modified proteins,proteins comprised of unnatural amino acids,as well as mirror-image proteins.This review summarizes recent strides in synthetic method developments for chemical protein synthesis,including innovative techniques in solid-phase peptide synthesis,the challenges presented by difficult sequences in either synthesis or folding and the exploration of novel ligation reactions using both chemical and enzymatic methods.Furthermore,the review also delves into newly developed protocols for site-selective protein modifications and the generation of stapled or macrocyclized peptides/miniproteins,highlighting the power of chemical methods to make structurally diverse proteins.Recent applications of synthetic proteins in investigating post-translational modifications(phosphorylation,lipidation,glycosylation,ubiquitination,etc.),mirror-image biological processes and drug development are further discussed.Together,these topics provide a comprehensive overview of the current landscape of chemical protein synthesis.
基金supported by the National Natural Science Foundation of China(Nos. U1732161, 91753120)
文摘As one of the most widely existing post-translational modification models, ubiquitination regulates diverse cellular activities. In eukaryotes, K-branched ubiquitin chains play key roles in cell cycle and protein quality control. However, the structural and biochemical properties of K-branched ubiquitin chains have not been well examined. Here we employed the synthetic linkage-and length-defined K-branched ubiquitin chains to examine their binding and hydrolysis properties in vitro. Quantitatively affinity determination of ubiquitin chains to the proteasome ubiquitin receptor S5 a indicated that the S5 a exhibited preference binding to K-branched chains over K-linked chains, but not K-conjugated chains. In addition, deubiquitination experiments were carried out and the results showed that K-branched chains were preferably hydrolyzed by proteasome-associated deubiquitinase Rpnll than homotypic Kor K-linked chains.
基金the National Basic Research Program(973 Program)(Nos.2015CB910103 and 2016YFA0400903)the National Natural Science Foundation of China(Grant Nos.91753120 and U1732161).
文摘Dear Editor,It is known that most of lives on the earth compose of homochiral molecules of L-amino acids and D-ribose nucleic acids.However,little is known why and how the life's chirality in such a way.Studies on an artificial mirror-image life could strengthen our understanding of the question about the origin of life on the Earth and even elsewhere in the universe.Especially studies on mirror-image life would also have a plenty of vast application prospects in materials,energy and pharmaceutical sciences(Bohannon,2010).
基金supported by the National Key R&D Program of China(No.2019YFA0706902)National Natural Science Foundation of China(Nos.U1732161 and 91753120)Science and Technological Fund of Anhui Province for Outstanding Youth(No.1808085J04)。
文摘D-peptides are recognized as a new class of synthetic chemical drugs and they possess many interesting advantages such as high enzymatic stability,improved oral bioavailability,as well as high binding affinity and specificity.Recently,D-peptide drugs have been attracting increasing attention in both academic and industrial researches over recent years.One D-peptide etelcalcetide has even entered the market that targets the calcium(Ca2+)-sensing receptor(CaSR) to fight secondary hyperparathyroidism.Effective discovery and optimization of D-peptide ligands that can bind to various disease-related targets with high specificity and potency is of great importance for the development of D-peptide drugs.This review surveys the recent method development in this area especially the chemical protein synthesis-assisted high-throughput screening strategies for D-peptide ligands and their application in drug discovery.
基金the National Key R&D Program of China(2017YFA0505200 and 2019YFA0706902)the National Natural Science Foundation of China(22022703,91753205,and 21750005)the Science and Technological Fund of Anhui Province for Outstanding Youth(1808085J04)。
文摘A mirror-image protein-based information barcoding and storage technology wherein D-amino acids are used to encode information into mirror-image proteins that are chemically synthesized is described.These mirror-image proteins were then fused into various materials from which information-encoded objects were produced.Subsequently,the mirror-image proteins were extracted from the objects using biotin-streptavidin resin-mediated specific enrichment and cleaved using an Ni(Ⅱ)-mediated selective peptide cleavage.Protein sequencing was accomplished using liquid chromatography/tandem mass spectrometry(LC-MS/MS)and then transcoded into the recorded information.We demonstrated the use of this technology to encode Chinese words into mirror-image proteins,which were then fused onto a poly(ethylene terephthalate)(PET)film and retrieved and decoded by LC-MS/MS sequencing.Compared to information barcoding and storage technologies using natural biopolymers,the mirrorimage biopolymers used in our technology may be more stable and durable.
基金supported by the National Natural Science Foundation of China (21807063, 91753120, U1732161, 81503094)the start-up grant from Qingdao University (41118010086)the China Postdoctoral Science Foundation (2016 M600524)
文摘Ubiquitination, a key and extensive posttranslational modification of proteins, has profound effects on a variety of physiological and pathological processes. The inherent complexity of ubiquitin conjugates makes it highly challenging to study the functional and structural mechanisms of ubiquitination. To address these challenges, accesses to sufficient poly-ubiquitin chains or ubiquitinated proteins are urgently needed. Over the last decade, synthetic protein chemists have developed several novel peptide ligation methods for the preparation of ubiquitin conjugates with precise control over the atomic structure. In this review, we summarize the recent breakthroughs and potential challenges in the chemical synthesis and semi-synthesis of ubiquitin conjugates with respect to the preparation of poly-ubiquitin-based proteins and ubiquitin-based probes.