There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B fac...There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.展开更多
Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,na...Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.展开更多
Aortic aneurysm is a chronic aortic disease affected by many factors.Although it is generally asymptomatic,it poses a significant threat to human life due to a high risk of rupture.Because of its strong concealment,it...Aortic aneurysm is a chronic aortic disease affected by many factors.Although it is generally asymptomatic,it poses a significant threat to human life due to a high risk of rupture.Because of its strong concealment,it is difficult to diagnose the disease in the early stage.At present,there are no effective drugs for the treatment of aneurysms.Surgical intervention and endovascular treatment are the only therapies.Although current studies have discovered that inflammatory responses as well as the production and activation of various proteases promote aortic aneurysm,the specific mechanisms remain unclear.Researchers are further exploring the pathogenesis of aneurysms to find new targets for diagnosis and treatment.To better understand aortic aneurysm,this review elaborates on the discovery history of aortic aneurysm,main classification and clinical manifestations,related molecular mechanisms,clinical cohort studies and animal models,with the ultimate goal of providing insights into the treatment of this devastating disease.The underlying problem with aneurysm disease is weakening of the aortic wall,leading to progressive dilation.If not treated in time,the aortic aneurysm eventually ruptures.An aortic aneurysm is a local enlargement of an artery caused by a weakening of the aortic wall.The disease is usually asymptomatic but leads to high mortality due to the risk of artery rupture.展开更多
In plants,WUSCHEL-related homeobox1(WOX1)homologs promote lamina mediolateral outgrowth.However,the downstream components linking WOX1 and lamina development remain unclear.In this study,we revealed the roles of WOX1 ...In plants,WUSCHEL-related homeobox1(WOX1)homologs promote lamina mediolateral outgrowth.However,the downstream components linking WOX1 and lamina development remain unclear.In this study,we revealed the roles of WOX1 in palmate leaf expansion in cucumber(Cucumis sativus).A cucumber mango fruit(mf)mutant,resulting from truncation of a WOX1-type protein(CsWOX1),displayed abnormal lamina growth and defects in the development of secondary and smaller veins.CsWOX1 was expressed in the middle mesophyll and leaf margins and rescued defects of the Arabidopsis wox1 prs double mutant.Transcriptomic analysis revealed that genes involved in auxin polar transport and auxin response were highly associated with leaf development.Analysis of the cucumber mf rl(round leaf)double mutant revealed that CsWOX1 functioned in vein development via PINOID(CsPID1)-controlled auxin transport.Overexpression of CsWOX1 in cucumber(CsWOX1-OE)affected vein patterning and produced‘butterfly-shaped’leaves.CsWOX1 physically interacted with CsTCP4a,which may account for the abnormal lamina development in the mf mutant line and the smaller leaves in the CsWOX1-OE plants.Our findings demonstrated that CsWOX1 regulates cucumber leaf vein development by modulating auxin polar transport;moreover,CsWOX1 regulates leaf size by controlling CIN-TCP genes.展开更多
Under solvothermal condition,the reaction of furan-2,5-dicaboxylate(H2FDA) and glycol with Gd(NO3)3.6H2O gave microporous lanthanide metal-organic framework(MOF),{[Gd(FDA)1.5(glycol)].1.5H2O}}n(1).This compound was ch...Under solvothermal condition,the reaction of furan-2,5-dicaboxylate(H2FDA) and glycol with Gd(NO3)3.6H2O gave microporous lanthanide metal-organic framework(MOF),{[Gd(FDA)1.5(glycol)].1.5H2O}}n(1).This compound was characterized by single crystal X-ray diffraction,infrared spectroscopy,elemental analysis,thermogravimetry analysis,and powder X-ray diffraction.The Gd(III) ions were connected by carboxylic group of FDA2-to give 1D chains,which were further linked by FDA2-,forming a 3D porous framework with 3D channels.Gas adsorption properties with N2,H2 and CO_(2) of the compound were studied.Magnetic studies show that there are weak ferromagnetic interactions transmitted by μ1,3 carboxylic group between the Gd(III) ions.展开更多
Salinity is a major abiotic stress factor that seriously affects plant growth. Many genes are involved in the response to salt stress with various metabolism pathways. A number of plant transcription factor family gen...Salinity is a major abiotic stress factor that seriously affects plant growth. Many genes are involved in the response to salt stress with various metabolism pathways. A number of plant transcription factor family genes have been found to be involved in the salt stress response, and NAM, ATAF and CUC(NAC) transcription factors are thought to act as active regulators during abiotic stress, especially salt stress. In this study, we detected a rice NAC transcription factor coding gene, OsNAC041, and confirmed that it influenced the germination of seeds under salt stress and salt tolerance of plants. OsNAC041 was primarily expressed in the leaves and located in the nucleus. Furthermore, the CRISPR/Cas9 method was used to obtain a targeted osnac041 mutant, of which the plant height was higher than that of the wild-type, showing increased salt sensitivity. Moreover, RNA-seq analysis revealed a number of differentially expressed genes(DEGs) involved in several important signaling pathways in the osnac041 mutant. Subsequently, Kyoto Encyclopedia of Genes and Genomes annotation also revealed differential expression of DEGs associated with mitogen-activated protein kinase signaling, peroxisome, eukaryotictype ABC transporters, photosynthesis and plant hormones, which are involved in stress-related signaling pathways. Overall, our study suggested that OsNAC041 was involved in the salt stress response in rice. These findings not only provide empirical evidence of OsNAC041 function, but also provide new insight into its potential application in rice resistance breeding.展开更多
基金Supported in part by National Key Basic Research Program of China (2015CB856700)National Natural Science Foundation of China (NSFC) (11335008,11425524, 11625523, 11635010, 11735014, 11822506, 11935018)+18 种基金the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics (CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257, U1532258, U1732263)CAS Key Research Program of Frontier Science (QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040)100 Talents Program of CASCAS PIFIthe Thousand Talents Program of ChinaIN-PAC and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG under Contracts NosCollaborative Research Center CRC 1044, FOR 2359Istituto Nazionale di Fisica Nucleare, ItalyKoninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03)Ministry of Development of Turkey (DPT2006K-120470)National Science and Technology fundThe Knut and Alice Wallenberg Foundation (Sweden) (2016.0157)The Swedish Research CouncilU. S. Department of Energy (DE-FG02-05ER41374, DESC-0010118, DE-SC-0012069)University of Groningen (Ru G) and the Helmholtzzentrum fuer Schwerionenforschung Gmb H (GSI), Darmstadtthe Russian Ministry of Science and Higher Education (14.W03.31.0026).
文摘There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.
基金Supported in part by National Key Basic Research Program of China(2015CB856700)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U 1732263,U 1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSWSLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)German Research Foundation DFG under Contracts Nos.Collaborative Research Center CRC 1044,FOR 2359Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development o f Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DEFG02-05ER41374,DE-SC-0012069)。
文摘Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.
基金This work was supported by the National Natural Science Foundation of China(81970425)by the National High Technology Research and Development Program of China(2020YFA0803700),and by Hangzhou Qianjiang Distinguished Expert Project(Prof.Lemin Zheng).
文摘Aortic aneurysm is a chronic aortic disease affected by many factors.Although it is generally asymptomatic,it poses a significant threat to human life due to a high risk of rupture.Because of its strong concealment,it is difficult to diagnose the disease in the early stage.At present,there are no effective drugs for the treatment of aneurysms.Surgical intervention and endovascular treatment are the only therapies.Although current studies have discovered that inflammatory responses as well as the production and activation of various proteases promote aortic aneurysm,the specific mechanisms remain unclear.Researchers are further exploring the pathogenesis of aneurysms to find new targets for diagnosis and treatment.To better understand aortic aneurysm,this review elaborates on the discovery history of aortic aneurysm,main classification and clinical manifestations,related molecular mechanisms,clinical cohort studies and animal models,with the ultimate goal of providing insights into the treatment of this devastating disease.The underlying problem with aneurysm disease is weakening of the aortic wall,leading to progressive dilation.If not treated in time,the aortic aneurysm eventually ruptures.An aortic aneurysm is a local enlargement of an artery caused by a weakening of the aortic wall.The disease is usually asymptomatic but leads to high mortality due to the risk of artery rupture.
基金supported by the National Key Research and Development Program of China(2019YFD1000300)the National Natural Science Foundation of China(Nos.31672150 and 31872111).
文摘In plants,WUSCHEL-related homeobox1(WOX1)homologs promote lamina mediolateral outgrowth.However,the downstream components linking WOX1 and lamina development remain unclear.In this study,we revealed the roles of WOX1 in palmate leaf expansion in cucumber(Cucumis sativus).A cucumber mango fruit(mf)mutant,resulting from truncation of a WOX1-type protein(CsWOX1),displayed abnormal lamina growth and defects in the development of secondary and smaller veins.CsWOX1 was expressed in the middle mesophyll and leaf margins and rescued defects of the Arabidopsis wox1 prs double mutant.Transcriptomic analysis revealed that genes involved in auxin polar transport and auxin response were highly associated with leaf development.Analysis of the cucumber mf rl(round leaf)double mutant revealed that CsWOX1 functioned in vein development via PINOID(CsPID1)-controlled auxin transport.Overexpression of CsWOX1 in cucumber(CsWOX1-OE)affected vein patterning and produced‘butterfly-shaped’leaves.CsWOX1 physically interacted with CsTCP4a,which may account for the abnormal lamina development in the mf mutant line and the smaller leaves in the CsWOX1-OE plants.Our findings demonstrated that CsWOX1 regulates cucumber leaf vein development by modulating auxin polar transport;moreover,CsWOX1 regulates leaf size by controlling CIN-TCP genes.
基金supported by grants from the National Natural Science Foundation of China(90922032 & 20801028)the Natural Science Foundation of Tianjin(09JCZDJC22100 and 09JCYBJC04000)Specialized Research Fund for the Doctoral Program of Higher Education of China(20100031110009 & IRT0927)
文摘Under solvothermal condition,the reaction of furan-2,5-dicaboxylate(H2FDA) and glycol with Gd(NO3)3.6H2O gave microporous lanthanide metal-organic framework(MOF),{[Gd(FDA)1.5(glycol)].1.5H2O}}n(1).This compound was characterized by single crystal X-ray diffraction,infrared spectroscopy,elemental analysis,thermogravimetry analysis,and powder X-ray diffraction.The Gd(III) ions were connected by carboxylic group of FDA2-to give 1D chains,which were further linked by FDA2-,forming a 3D porous framework with 3D channels.Gas adsorption properties with N2,H2 and CO_(2) of the compound were studied.Magnetic studies show that there are weak ferromagnetic interactions transmitted by μ1,3 carboxylic group between the Gd(III) ions.
基金supported by the National Science Foundation of China (Grant No. 31771486)the Sichuan Youth Science and Technology Foundation (Grant No. 2017JQ0005)+1 种基金the National Key Research and Development Program of China (Grant No. 2017YFD01005050102)the National Transgenic Major Project (Grant No. SQ2018ZD08019-001-003)
文摘Salinity is a major abiotic stress factor that seriously affects plant growth. Many genes are involved in the response to salt stress with various metabolism pathways. A number of plant transcription factor family genes have been found to be involved in the salt stress response, and NAM, ATAF and CUC(NAC) transcription factors are thought to act as active regulators during abiotic stress, especially salt stress. In this study, we detected a rice NAC transcription factor coding gene, OsNAC041, and confirmed that it influenced the germination of seeds under salt stress and salt tolerance of plants. OsNAC041 was primarily expressed in the leaves and located in the nucleus. Furthermore, the CRISPR/Cas9 method was used to obtain a targeted osnac041 mutant, of which the plant height was higher than that of the wild-type, showing increased salt sensitivity. Moreover, RNA-seq analysis revealed a number of differentially expressed genes(DEGs) involved in several important signaling pathways in the osnac041 mutant. Subsequently, Kyoto Encyclopedia of Genes and Genomes annotation also revealed differential expression of DEGs associated with mitogen-activated protein kinase signaling, peroxisome, eukaryotictype ABC transporters, photosynthesis and plant hormones, which are involved in stress-related signaling pathways. Overall, our study suggested that OsNAC041 was involved in the salt stress response in rice. These findings not only provide empirical evidence of OsNAC041 function, but also provide new insight into its potential application in rice resistance breeding.