The increasing penetration of renewable energy sources (RESs) brings more power generation fluctuations into power systems, which puts forward higher requirement on the regulation capacities for maintaining the power ...The increasing penetration of renewable energy sources (RESs) brings more power generation fluctuations into power systems, which puts forward higher requirement on the regulation capacities for maintaining the power balance between supply and demand. In addition to traditional generators for providing regulation capacities, the progressed information and communication technologies enable an alternative method by controlling flexible loads, especially thermostatically controlled loads (TCLs) for regulation services. This paper investigates the modeling and control strategies of aggregated TCLs as the virtual energy storage system (VESS) for demand response. First, TCLs are modeled as VESSs and compared with the traditional energy storage system (ESS) to analyze their characteristic differences. Then, the control strategies of VESS are investigated in microgrid and main grid aspects, respectively. It shows that VESS control strategies can play important roles in frequency regulation and voltage regulation for power systems’ stability. Finally, future research directions of VESS are prospected, including the schedulable potential evaluation, modeling of TCLs, hierarchical control strategies of VESS considering ESSs and RESs and reliability and fast response in frequency control for VESS.展开更多
Currently,critical peak load caused by residential customers has attracted utility companies and policymakers to pay more attention to residential demand response(RDR)programs.In typical RDR programs,residential custo...Currently,critical peak load caused by residential customers has attracted utility companies and policymakers to pay more attention to residential demand response(RDR)programs.In typical RDR programs,residential customers react to the price or incentive-based signals,but the actions can fall behind flexible market situations.For those residential customers equipped with smart meters,they may contribute more DR loads if they can participate in DR events in a proactive way.In this paper,we propose a comprehensive market framework in which residential customers can provide proactive RDR actions in a day-ahead market(DAM).We model and evaluate the interactions between generation companies(GenCos),retailers,residential customers,and the independent system operator(ISO)via an agent-based modeling and simulation(ABMS)approach.The simulation framework contains two main procedures—the bottom-up modeling procedure and the reinforcement learning(RL)procedure.The bottom-up modeling procedure models the residential load profiles separately by household types to capture the RDR potential differences in advance so that residential customers may rationally provide automatic DR actions.Retailers and GenCos optimize their bidding strategies via the RL procedure.The modified optimization approach in this procedure can prevent the training results from falling into local optimum solutions.The ISO clears the DAM to maximize social welfare via Karush-Kuhn-Tucker(KKT)conditions.Based on realistic residential data in China,the proposed models and methods are verified and compared in a large multi-scenario test case with 30,000 residential households.Results show that proactive RDR programs and interactions between market entities may yield significant benefits for both the supply and demand sides.The models and methods in this paper may be used by utility companies,electricity retailers,market operators,and policy makers to evaluate the consequences of a proactive RDR and the interactions among multi-entities.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant 2016YFB0901100in part by the National Natural Science Foundation of China(NSFC)under Grant 51577167.
文摘The increasing penetration of renewable energy sources (RESs) brings more power generation fluctuations into power systems, which puts forward higher requirement on the regulation capacities for maintaining the power balance between supply and demand. In addition to traditional generators for providing regulation capacities, the progressed information and communication technologies enable an alternative method by controlling flexible loads, especially thermostatically controlled loads (TCLs) for regulation services. This paper investigates the modeling and control strategies of aggregated TCLs as the virtual energy storage system (VESS) for demand response. First, TCLs are modeled as VESSs and compared with the traditional energy storage system (ESS) to analyze their characteristic differences. Then, the control strategies of VESS are investigated in microgrid and main grid aspects, respectively. It shows that VESS control strategies can play important roles in frequency regulation and voltage regulation for power systems’ stability. Finally, future research directions of VESS are prospected, including the schedulable potential evaluation, modeling of TCLs, hierarchical control strategies of VESS considering ESSs and RESs and reliability and fast response in frequency control for VESS.
基金supported in part by the National Key Research and Development Program of China(2016YFB0901100)the National Natural Science Foundation of China(U1766203)+1 种基金the Science and Technology Project of State Grid Corporation of China(Friendly interaction system of supply-demand between urban electric power customers and power grid)the China Scholarship Council(CSC).
文摘Currently,critical peak load caused by residential customers has attracted utility companies and policymakers to pay more attention to residential demand response(RDR)programs.In typical RDR programs,residential customers react to the price or incentive-based signals,but the actions can fall behind flexible market situations.For those residential customers equipped with smart meters,they may contribute more DR loads if they can participate in DR events in a proactive way.In this paper,we propose a comprehensive market framework in which residential customers can provide proactive RDR actions in a day-ahead market(DAM).We model and evaluate the interactions between generation companies(GenCos),retailers,residential customers,and the independent system operator(ISO)via an agent-based modeling and simulation(ABMS)approach.The simulation framework contains two main procedures—the bottom-up modeling procedure and the reinforcement learning(RL)procedure.The bottom-up modeling procedure models the residential load profiles separately by household types to capture the RDR potential differences in advance so that residential customers may rationally provide automatic DR actions.Retailers and GenCos optimize their bidding strategies via the RL procedure.The modified optimization approach in this procedure can prevent the training results from falling into local optimum solutions.The ISO clears the DAM to maximize social welfare via Karush-Kuhn-Tucker(KKT)conditions.Based on realistic residential data in China,the proposed models and methods are verified and compared in a large multi-scenario test case with 30,000 residential households.Results show that proactive RDR programs and interactions between market entities may yield significant benefits for both the supply and demand sides.The models and methods in this paper may be used by utility companies,electricity retailers,market operators,and policy makers to evaluate the consequences of a proactive RDR and the interactions among multi-entities.