期刊文献+

Agent-based Modeling and Simulation for the Electricity Market with Residential Demand Response 被引量:5

原文传递
导出
摘要 Currently,critical peak load caused by residential customers has attracted utility companies and policymakers to pay more attention to residential demand response(RDR)programs.In typical RDR programs,residential customers react to the price or incentive-based signals,but the actions can fall behind flexible market situations.For those residential customers equipped with smart meters,they may contribute more DR loads if they can participate in DR events in a proactive way.In this paper,we propose a comprehensive market framework in which residential customers can provide proactive RDR actions in a day-ahead market(DAM).We model and evaluate the interactions between generation companies(GenCos),retailers,residential customers,and the independent system operator(ISO)via an agent-based modeling and simulation(ABMS)approach.The simulation framework contains two main procedures—the bottom-up modeling procedure and the reinforcement learning(RL)procedure.The bottom-up modeling procedure models the residential load profiles separately by household types to capture the RDR potential differences in advance so that residential customers may rationally provide automatic DR actions.Retailers and GenCos optimize their bidding strategies via the RL procedure.The modified optimization approach in this procedure can prevent the training results from falling into local optimum solutions.The ISO clears the DAM to maximize social welfare via Karush-Kuhn-Tucker(KKT)conditions.Based on realistic residential data in China,the proposed models and methods are verified and compared in a large multi-scenario test case with 30,000 residential households.Results show that proactive RDR programs and interactions between market entities may yield significant benefits for both the supply and demand sides.The models and methods in this paper may be used by utility companies,electricity retailers,market operators,and policy makers to evaluate the consequences of a proactive RDR and the interactions among multi-entities.
出处 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第2期368-380,共13页 中国电机工程学会电力与能源系统学报(英文)
基金 supported in part by the National Key Research and Development Program of China(2016YFB0901100) the National Natural Science Foundation of China(U1766203) the Science and Technology Project of State Grid Corporation of China(Friendly interaction system of supply-demand between urban electric power customers and power grid) the China Scholarship Council(CSC).
  • 相关文献

同被引文献15

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部