Annexin A5 is a Ca2?-dependent phospholipidbinding protein and protein kinase C inhibitory protein. It has a potential role in cellular signal transduction, inflammation, growth and differentiation. In this study, we ...Annexin A5 is a Ca2?-dependent phospholipidbinding protein and protein kinase C inhibitory protein. It has a potential role in cellular signal transduction, inflammation, growth and differentiation. In this study, we evaluated the expression of this protein in lung tumor tissues and subsequently established a NCI-H520 cell line that stably expresses the wild-type ANXA5 gene to determine the effects of annexin A5 upregulation on the cell morphology, proliferation and metastasis potential in vitro.The effects of annexin A5 on NCI-H520 cells were tested by crystal violet staining, CCK-8 assay, scratch wound assay, and Transwell assay. The expressions of Akt,PCNA, vimentin, and E-cadherin were examined by Western blot assay. In this study, we demonstrated that annexin A5 is expressed at lower levels in tumor tissues compared with normal tissues. Additionally, the upregulation of this protein may inhibit the proliferation, migration, and invasion abilities of NCI-H520 cells in vitro. The transfected cells were arrested in the G1/S phase of the cell cycle, and the expression levels of Akt, PCNA and Vimentin were downregulated, while E-cadherin was upregulated.展开更多
The structural change-mediated catalytic activity regulation plays a significant role in the biological functions of natural enzymes.However,there is virtually no artificial nanozyme reported that can achieve natural ...The structural change-mediated catalytic activity regulation plays a significant role in the biological functions of natural enzymes.However,there is virtually no artificial nanozyme reported that can achieve natural enzyme-like stringent spatiotemporal structure-based catalytic activity regulation.Here,we report a subnanostructural transformable gold@ceria(STGC-PEG)nanozyme that performs tunable catalytic activities via near-infrared(NIR)light-mediated sub-nanostructural transformation.The gold core in STGC-PEG can generate energetic hot electrons upon NIR irradiation,wherein an internal sub-nanostructural transformation is initiated by the conversion between CeO;and electron-rich state of CeO;-x,and active oxygen vacancies generation via the hot-electron injection.Interestingly,the sub-nanostructural transformation of STGC-PEG enhances peroxidase-like activity and unprecedentedly activates plasmon-promoted oxidase-like activity,allowing highly efficient low-power NIR light(50 m W cm;)-activated photocatalytic therapy of tumors.Our atomic-level design and fabrication provide a platform to precisely regulate the catalytic activities of nanozymes via a light-mediated sub-nanostructural transformation,approaching natural enzyme-like activity control in complex living systems.展开更多
Fermentation substrates of rice with different milling degrees(MDs) were prepared and fermented with human feces to compare their fermentation properties and effects on gut microbiota.MD 0s,MD 5s and MD 60s represente...Fermentation substrates of rice with different milling degrees(MDs) were prepared and fermented with human feces to compare their fermentation properties and effects on gut microbiota.MD 0s,MD 5s and MD 60s represented brown rice,moderately-milled rice and white rice,respectively.After in vitro fermentation,the MD 5s group showed higher starch utilization,compared with the MD 0s and 60s groups evaluated by Fourier transform infrared spectrometer,and confocal laser scanning microscope.Effects of fermentation substrates of rice with different MDs on gut microbiota were evaluated by 16S rDNA sequencing.All the sample groups reduced the pH and produced short-chain fatty acids(SCFAs) and branched-chain fatty acids.The MD 5s group exhibited higher α-diversity than the MD 0s and 60s groups.Abundances of Phascolarctobacterium,Blautia and norank_f_Ruminococcaceae were higher in the MD 0s and 5s groups,compared with the MD 60s group.These bacteria were also positively correlated with the SCFAs production via Spearman correlation analysis.In vitro culture assay revealed that fermentation substrates of MD 0s and 5s promoted the growth of two probiotics(Akkermansia muciniphila and Bifidobacterium adolescentis).Our results showed that moderate milling might be an appropriate way to produce rice products with richer nutrients and better fermentation properties.展开更多
Biodegradable Mg alloys have generated great interest for biomedical applications. Accurate predictions of in vivo degradation of Mg alloys through costeffective in vitro evaluations require the latter to be conducted...Biodegradable Mg alloys have generated great interest for biomedical applications. Accurate predictions of in vivo degradation of Mg alloys through costeffective in vitro evaluations require the latter to be conducted in an environment close to that of physiological scenarios. However, the roles of glucose and buffering agents in regulating the in vitro degradation performance of Mg alloys has not been elucidated. Herein, degradation behavior of AZ31 alloy is investigated by hydrogen evolution measurements, pH monitoring and electrochemical tests. Results indicate that glucose plays a content-dependent role in degradation of AZ31 alloy in buffer-free saline solution. The presence of a low concentration of glucose, i.e. 1.0 g/L, decreases the corrosion rate of Mg alloy AZ31, whereas the presence of 2.0 and 3.0 glL glucose accelerates the corrosion rate during long term immersion in saline solution. In terms of Tris-buffered saline solution, the addition of glucose increases pH value and promotes pitting corrosion or general corrosion of AZ31 alloy. This study provides a novel perspective to understand the bio-corrosion of Mg alloys in buffering agents and glucose containing solutions.展开更多
The absorber is the key unit in the post-combustion monoethanolamine(MEA)-based carbon dioxide(CO_(2))capture process.A rate-based dynamic model for the absorber is developed and validated using steady-state experimen...The absorber is the key unit in the post-combustion monoethanolamine(MEA)-based carbon dioxide(CO_(2))capture process.A rate-based dynamic model for the absorber is developed and validated using steady-state experimental data reported in open literature.Sensitivity analysis is performed with respect to important model parameters associated with the reaction,mass transport and phy-sical property relationships.Then,a singular value decomposition(SVD)-based subspace parameter estimation method is proposed to improve the model accu-racy.Finally,dynamic simulations are carried out to investigate the effects of the feed rate of lean MEA solution and the flue inlet conditions.Simulation results indicate that the established dynamic model can reasonably reflect the physical behavior of the absorber.Some new insights are gained from the simulation results.展开更多
基金supported by the National Basic Research Program of China (2012CB967003)National Natural Science Foundation of China (81272225)+2 种基金the Research Fund for the Docoral Program of Higher Education of China (20132106110006)the Science Foundation of Liaoning Province Education Administration (L2013350)Dalian Science Foundation (2011E12SF036).
文摘Annexin A5 is a Ca2?-dependent phospholipidbinding protein and protein kinase C inhibitory protein. It has a potential role in cellular signal transduction, inflammation, growth and differentiation. In this study, we evaluated the expression of this protein in lung tumor tissues and subsequently established a NCI-H520 cell line that stably expresses the wild-type ANXA5 gene to determine the effects of annexin A5 upregulation on the cell morphology, proliferation and metastasis potential in vitro.The effects of annexin A5 on NCI-H520 cells were tested by crystal violet staining, CCK-8 assay, scratch wound assay, and Transwell assay. The expressions of Akt,PCNA, vimentin, and E-cadherin were examined by Western blot assay. In this study, we demonstrated that annexin A5 is expressed at lower levels in tumor tissues compared with normal tissues. Additionally, the upregulation of this protein may inhibit the proliferation, migration, and invasion abilities of NCI-H520 cells in vitro. The transfected cells were arrested in the G1/S phase of the cell cycle, and the expression levels of Akt, PCNA and Vimentin were downregulated, while E-cadherin was upregulated.
基金We acknowledge financial support by the National Natural Science Foundation of China(32071374,32000985,81761148029,81620108028)Program of Shanghai Academic Research Leader under the Science and Technology Innovation Action Plan(21XD1422100)+3 种基金Leading Talent of“Ten Thousand Plan”-National High-Level Talents Special Support Plan,One Belt and One Road International Cooperation Project from Key Research and Development Program of Zhejiang Province(2019C04024)the Zhejiang Provincial Natural Science Foundation of China(LR22C100001,LGF19C100002,LQ21H300003)Zhejiang Province Medical and Health Science Research Project(2021KY666),and Zhejiang Pharmaceutical Association(2019ZYY12)Open access funding provided by Shanghai Jiao Tong University
文摘The structural change-mediated catalytic activity regulation plays a significant role in the biological functions of natural enzymes.However,there is virtually no artificial nanozyme reported that can achieve natural enzyme-like stringent spatiotemporal structure-based catalytic activity regulation.Here,we report a subnanostructural transformable gold@ceria(STGC-PEG)nanozyme that performs tunable catalytic activities via near-infrared(NIR)light-mediated sub-nanostructural transformation.The gold core in STGC-PEG can generate energetic hot electrons upon NIR irradiation,wherein an internal sub-nanostructural transformation is initiated by the conversion between CeO;and electron-rich state of CeO;-x,and active oxygen vacancies generation via the hot-electron injection.Interestingly,the sub-nanostructural transformation of STGC-PEG enhances peroxidase-like activity and unprecedentedly activates plasmon-promoted oxidase-like activity,allowing highly efficient low-power NIR light(50 m W cm;)-activated photocatalytic therapy of tumors.Our atomic-level design and fabrication provide a platform to precisely regulate the catalytic activities of nanozymes via a light-mediated sub-nanostructural transformation,approaching natural enzyme-like activity control in complex living systems.
基金supported by the National Natural Science Foundation of China (32202051)the Shanghai Sailing Program (21YF1431800, 20YF1433400)+1 种基金Shanghai Agriculture Applied Technology Development Program, China (2021-02-08-0012-F00780 )the National Key R&D Program of China (2022YFF1100104, 2023YFF1103404)。
文摘Fermentation substrates of rice with different milling degrees(MDs) were prepared and fermented with human feces to compare their fermentation properties and effects on gut microbiota.MD 0s,MD 5s and MD 60s represented brown rice,moderately-milled rice and white rice,respectively.After in vitro fermentation,the MD 5s group showed higher starch utilization,compared with the MD 0s and 60s groups evaluated by Fourier transform infrared spectrometer,and confocal laser scanning microscope.Effects of fermentation substrates of rice with different MDs on gut microbiota were evaluated by 16S rDNA sequencing.All the sample groups reduced the pH and produced short-chain fatty acids(SCFAs) and branched-chain fatty acids.The MD 5s group exhibited higher α-diversity than the MD 0s and 60s groups.Abundances of Phascolarctobacterium,Blautia and norank_f_Ruminococcaceae were higher in the MD 0s and 5s groups,compared with the MD 60s group.These bacteria were also positively correlated with the SCFAs production via Spearman correlation analysis.In vitro culture assay revealed that fermentation substrates of MD 0s and 5s promoted the growth of two probiotics(Akkermansia muciniphila and Bifidobacterium adolescentis).Our results showed that moderate milling might be an appropriate way to produce rice products with richer nutrients and better fermentation properties.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 51571134 and 51601108), the SDUST Research Fund (2014TDJH104) and the Science and Technology Innovation Fund of SDUST for graduate students (SDKDYC180371).
文摘Biodegradable Mg alloys have generated great interest for biomedical applications. Accurate predictions of in vivo degradation of Mg alloys through costeffective in vitro evaluations require the latter to be conducted in an environment close to that of physiological scenarios. However, the roles of glucose and buffering agents in regulating the in vitro degradation performance of Mg alloys has not been elucidated. Herein, degradation behavior of AZ31 alloy is investigated by hydrogen evolution measurements, pH monitoring and electrochemical tests. Results indicate that glucose plays a content-dependent role in degradation of AZ31 alloy in buffer-free saline solution. The presence of a low concentration of glucose, i.e. 1.0 g/L, decreases the corrosion rate of Mg alloy AZ31, whereas the presence of 2.0 and 3.0 glL glucose accelerates the corrosion rate during long term immersion in saline solution. In terms of Tris-buffered saline solution, the addition of glucose increases pH value and promotes pitting corrosion or general corrosion of AZ31 alloy. This study provides a novel perspective to understand the bio-corrosion of Mg alloys in buffering agents and glucose containing solutions.
基金The work was financially supported by Basic Public Welfare research Plan of Zhejiang Province(LGG19F030006)Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province,China Jiliang University(Grant No.ZNZZSZ–CJLU2022–04)the Key Research and Development Program of Ningbo(2022Z165).
文摘The absorber is the key unit in the post-combustion monoethanolamine(MEA)-based carbon dioxide(CO_(2))capture process.A rate-based dynamic model for the absorber is developed and validated using steady-state experimental data reported in open literature.Sensitivity analysis is performed with respect to important model parameters associated with the reaction,mass transport and phy-sical property relationships.Then,a singular value decomposition(SVD)-based subspace parameter estimation method is proposed to improve the model accu-racy.Finally,dynamic simulations are carried out to investigate the effects of the feed rate of lean MEA solution and the flue inlet conditions.Simulation results indicate that the established dynamic model can reasonably reflect the physical behavior of the absorber.Some new insights are gained from the simulation results.