A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with t...A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with temperature dependent internal heat generation. The problem was solved for two main cases. In the first case, heat generation was assumed variable by fin temperature for a solid fin and in second heat generation varied with temperature for a porous fin. Results are presented for the temperature distribution for a range of values of parameters appearing in the mathematical formulation(e.g. N, εG, and G). Results reveal that DTM is very effective and convenient. Also, it is found that this method can achieve more suitable results in comparison to numerical methods.展开更多
Stewing of rice grains by steam after boiling in excess water can be used for cooking rice perfectly. The effects of this procedure in cooking of three varieties of Iranian rice (Sang Tarom, Domsiyah and Fair) on te...Stewing of rice grains by steam after boiling in excess water can be used for cooking rice perfectly. The effects of this procedure in cooking of three varieties of Iranian rice (Sang Tarom, Domsiyah and Fair) on textural and morphological properties of cooked rice grains were investigated. The results showed that this step in rice cooking reduced the hardness and increased the adhesiveness of rice grains significantly. By the use of the scanning electron microscopy, it was shown that the outer surface of cooked rice stewed by steam had less porosity and closer pores due to the modification during cooking, and better gelatinization and more expansion of starch granules compared to non-stewed samples. The use of this procedure in rice cooking to provide a fully cooked and gelatinized, softer and stickier final product is recommended.展开更多
In this paper motion of rigid rod on a circular surface is studied analytically.A new analytical method called modified homotopy perturbation method(MHPM)is applied for solving this problem in different initial condit...In this paper motion of rigid rod on a circular surface is studied analytically.A new analytical method called modified homotopy perturbation method(MHPM)is applied for solving this problem in different initial conditions to show capability of this method.The goveming equation for motion of a nigid rod on the circular surface without slipping have been solved using MHPM.The efficacy of MHPM for handling nonlinear oscillation systems with various small and large oscillation amplitudes are presented in comparison with numerical benchmarks.Outcomes reveal that MHPM has an excellent agreement with numerical solution.The results show that by decreasing the oscillation amplitude,the velocity of rigid rod decreases and for A=w3 the velocity profile is maximum.展开更多
The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparis...The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.展开更多
Particle size distributions of obtained samples from several sampling campaigns were determined and raw data were mass balanced before being used in simulation studies.After determination of breakage function,selectio...Particle size distributions of obtained samples from several sampling campaigns were determined and raw data were mass balanced before being used in simulation studies.After determination of breakage function,selection function,Bond work index,residence time distribution parameters,and Whiten's model parameters for air separators and diaphragms between the two compartments of tube ball mills,performance of the circuits was simulated for given throughputs and feed particle size distribution.Whiten's model parameters were determined by GA(genetic algorithm) toolbox of MATLAB software.Based on implemented models for modeling and simulation,optimization of circuits was carried out.It increased nearly 10.5% and 15.8% in fresh feed capacity input to each tube ball mill.In addition,circulating load ratios of circuits are modified to 118% and 127% from low level of 57% and 22%,respectively,and also cut points of air separators are adjusted at 30 and 40 μm from high range of 53 and 97 μm,respectively.All applications helped in well-operation and energy consumption reduction of equipments.展开更多
‘Stent versus stent' studies are a kind of randomized trials which are designed to show the superiority of the new stent designs compared with the previously approved ones. These studies are usually used by regulato...‘Stent versus stent' studies are a kind of randomized trials which are designed to show the superiority of the new stent designs compared with the previously approved ones. These studies are usually used by regulatory agencies, such as the U.S. Food and Drug Administration (FDA), to give an approval to new stent designs. The problem with these clinical trials is their high cost and difficulty. In this paper, a numerical alternative for 'stent versus stent' complicated clinical studies is presented. A finite element model is developed to investigate the influence of stent design on the outcome after coronary stent placement. Two commercially available stents (the NIR and Multi-Link stents) are modeled and their behavior during the deployment is compared in terms of stress distribution, radial gain, outer diameter changes and foreshortening. Moreover, the effect of stent design on the restenosis rate is investigated by comparing the stress distribution within the arteries. An analysis of the arterial wall stresses in the stented arteries indicates that the Multi-Link stent design causes lower stress to an atherosclerotic vessel with a localized stenotic lesion compared to the slotted tube NIR design. The findings correlate with the observed clinical restenosis rates, which have reported higher restenosis rates in the NIR compared with the Multi- Link stent design.展开更多
In this work, the Exp-function method is employed to find new wave solutions for the Sine-Gordon and Ostrovsky equation. The equations are simplified to the nonlinear partial differential equations and then different ...In this work, the Exp-function method is employed to find new wave solutions for the Sine-Gordon and Ostrovsky equation. The equations are simplified to the nonlinear partial differential equations and then different types of exact solutions are extracted by this method. It is shown that the Exp-function method is a powerful analytical method for solving other nonlinear equations occurring in nonlinear physical phenomena. Results are presented in contour plots that show the different values of effective parameters on the velocity profiles.展开更多
Motion of a vertically falling nano droplet in incompressible Newtonian media with initial velocity is investigated. The instantaneous velocity and acceleration are carried out by using the variational iteration metho...Motion of a vertically falling nano droplet in incompressible Newtonian media with initial velocity is investigated. The instantaneous velocity and acceleration are carried out by using the variational iteration method(VIM) and homotopy perturbation method(HPM), which are analytical solution techniques. The obtained results are compared with Runge–Kutta method in order to verify the accuracy of the proposed methods. The results show that, the analytical solutions are in good agreement with each other and with the numerical solution. Also, the effects of sphericity(?) on the velocity and acceleration profiles of the nano droplet are explained. Moreover, the results demonstrate that the VIM-Padé and HPM-Padé are very effective in generating analytical solutions for even highly nonlinear problems.展开更多
In this paper, a non-Newtonian third-grade blood in coronary and femoral arteries is simulated analytically and numerically. The blood is considered as the third- grade non-Newtonian fluid under the periodic body acce...In this paper, a non-Newtonian third-grade blood in coronary and femoral arteries is simulated analytically and numerically. The blood is considered as the third- grade non-Newtonian fluid under the periodic body acceleration motion and the pulsatile pressure gradient. The hybrid multi-step differential transformation method (Hybrid-Ms- DTM) and the Crank-Nicholson method (CNM) are used to solve the partial differential equation (PDE), and a good agreement between them is observed in the results. The effects of the some physical parameters such as the amplitude, the lead angle, and the body acceleration frequency on the velocity and shear stress profiles are considered. The results show that increasing the amplitude, Ag, and reducing the lead angle of body acceleration, 9, make higher velocity profiles on the center line of both arteries. Also, the maximum wall shear stress increases when Ag increases.展开更多
Electrospinning is a useful and efficient technique to produce polymeric nanofibers. Nanofibers of polymers are electrospun by creating an electrically charged jet of polymer solution. Numerical study on non-Newtonian...Electrospinning is a useful and efficient technique to produce polymeric nanofibers. Nanofibers of polymers are electrospun by creating an electrically charged jet of polymer solution. Numerical study on non-Newtonian and viscoelastic jets of polymer nanofibers in electrospinning process is presented in this work. In particular, the effect of non-Newtonian rheology on the jet profile during the electrospinning process is examined. The governing equations of the problem are solved numerically using the Keller-Box method. The effects of yield stress and power-law index on the elongation, velocity, stress and total force are presented and discussed in detail. The results show that by increasing the values of yield stress, the fluid elongation is reduced significantly.展开更多
文摘A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with temperature dependent internal heat generation. The problem was solved for two main cases. In the first case, heat generation was assumed variable by fin temperature for a solid fin and in second heat generation varied with temperature for a porous fin. Results are presented for the temperature distribution for a range of values of parameters appearing in the mathematical formulation(e.g. N, εG, and G). Results reveal that DTM is very effective and convenient. Also, it is found that this method can achieve more suitable results in comparison to numerical methods.
文摘Stewing of rice grains by steam after boiling in excess water can be used for cooking rice perfectly. The effects of this procedure in cooking of three varieties of Iranian rice (Sang Tarom, Domsiyah and Fair) on textural and morphological properties of cooked rice grains were investigated. The results showed that this step in rice cooking reduced the hardness and increased the adhesiveness of rice grains significantly. By the use of the scanning electron microscopy, it was shown that the outer surface of cooked rice stewed by steam had less porosity and closer pores due to the modification during cooking, and better gelatinization and more expansion of starch granules compared to non-stewed samples. The use of this procedure in rice cooking to provide a fully cooked and gelatinized, softer and stickier final product is recommended.
文摘In this paper motion of rigid rod on a circular surface is studied analytically.A new analytical method called modified homotopy perturbation method(MHPM)is applied for solving this problem in different initial conditions to show capability of this method.The goveming equation for motion of a nigid rod on the circular surface without slipping have been solved using MHPM.The efficacy of MHPM for handling nonlinear oscillation systems with various small and large oscillation amplitudes are presented in comparison with numerical benchmarks.Outcomes reveal that MHPM has an excellent agreement with numerical solution.The results show that by decreasing the oscillation amplitude,the velocity of rigid rod decreases and for A=w3 the velocity profile is maximum.
文摘The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.
基金financially supported by University of Tehran under contract number 450/51027041 with Iran Ministry of Industries and Mines
文摘Particle size distributions of obtained samples from several sampling campaigns were determined and raw data were mass balanced before being used in simulation studies.After determination of breakage function,selection function,Bond work index,residence time distribution parameters,and Whiten's model parameters for air separators and diaphragms between the two compartments of tube ball mills,performance of the circuits was simulated for given throughputs and feed particle size distribution.Whiten's model parameters were determined by GA(genetic algorithm) toolbox of MATLAB software.Based on implemented models for modeling and simulation,optimization of circuits was carried out.It increased nearly 10.5% and 15.8% in fresh feed capacity input to each tube ball mill.In addition,circulating load ratios of circuits are modified to 118% and 127% from low level of 57% and 22%,respectively,and also cut points of air separators are adjusted at 30 and 40 μm from high range of 53 and 97 μm,respectively.All applications helped in well-operation and energy consumption reduction of equipments.
文摘‘Stent versus stent' studies are a kind of randomized trials which are designed to show the superiority of the new stent designs compared with the previously approved ones. These studies are usually used by regulatory agencies, such as the U.S. Food and Drug Administration (FDA), to give an approval to new stent designs. The problem with these clinical trials is their high cost and difficulty. In this paper, a numerical alternative for 'stent versus stent' complicated clinical studies is presented. A finite element model is developed to investigate the influence of stent design on the outcome after coronary stent placement. Two commercially available stents (the NIR and Multi-Link stents) are modeled and their behavior during the deployment is compared in terms of stress distribution, radial gain, outer diameter changes and foreshortening. Moreover, the effect of stent design on the restenosis rate is investigated by comparing the stress distribution within the arteries. An analysis of the arterial wall stresses in the stented arteries indicates that the Multi-Link stent design causes lower stress to an atherosclerotic vessel with a localized stenotic lesion compared to the slotted tube NIR design. The findings correlate with the observed clinical restenosis rates, which have reported higher restenosis rates in the NIR compared with the Multi- Link stent design.
文摘In this work, the Exp-function method is employed to find new wave solutions for the Sine-Gordon and Ostrovsky equation. The equations are simplified to the nonlinear partial differential equations and then different types of exact solutions are extracted by this method. It is shown that the Exp-function method is a powerful analytical method for solving other nonlinear equations occurring in nonlinear physical phenomena. Results are presented in contour plots that show the different values of effective parameters on the velocity profiles.
文摘Motion of a vertically falling nano droplet in incompressible Newtonian media with initial velocity is investigated. The instantaneous velocity and acceleration are carried out by using the variational iteration method(VIM) and homotopy perturbation method(HPM), which are analytical solution techniques. The obtained results are compared with Runge–Kutta method in order to verify the accuracy of the proposed methods. The results show that, the analytical solutions are in good agreement with each other and with the numerical solution. Also, the effects of sphericity(?) on the velocity and acceleration profiles of the nano droplet are explained. Moreover, the results demonstrate that the VIM-Padé and HPM-Padé are very effective in generating analytical solutions for even highly nonlinear problems.
文摘In this paper, a non-Newtonian third-grade blood in coronary and femoral arteries is simulated analytically and numerically. The blood is considered as the third- grade non-Newtonian fluid under the periodic body acceleration motion and the pulsatile pressure gradient. The hybrid multi-step differential transformation method (Hybrid-Ms- DTM) and the Crank-Nicholson method (CNM) are used to solve the partial differential equation (PDE), and a good agreement between them is observed in the results. The effects of the some physical parameters such as the amplitude, the lead angle, and the body acceleration frequency on the velocity and shear stress profiles are considered. The results show that increasing the amplitude, Ag, and reducing the lead angle of body acceleration, 9, make higher velocity profiles on the center line of both arteries. Also, the maximum wall shear stress increases when Ag increases.
文摘Electrospinning is a useful and efficient technique to produce polymeric nanofibers. Nanofibers of polymers are electrospun by creating an electrically charged jet of polymer solution. Numerical study on non-Newtonian and viscoelastic jets of polymer nanofibers in electrospinning process is presented in this work. In particular, the effect of non-Newtonian rheology on the jet profile during the electrospinning process is examined. The governing equations of the problem are solved numerically using the Keller-Box method. The effects of yield stress and power-law index on the elongation, velocity, stress and total force are presented and discussed in detail. The results show that by increasing the values of yield stress, the fluid elongation is reduced significantly.