In this paper, nonreflecting artificial boundary conditions are considered for an acoustic problem in three dimensions. With the technique of Fourier decomposition under the orthogonal basis of spherical harmonics, th...In this paper, nonreflecting artificial boundary conditions are considered for an acoustic problem in three dimensions. With the technique of Fourier decomposition under the orthogonal basis of spherical harmonics, three kinds of equivalent exact artificial boundary conditions are obtained on a spherical artificial boundary. A numerical test is presented to show the performance of the method.展开更多
Asymptotic theory for the circuit envelope analysis is developed in this paper.A typical feature of circuit envelope analysis is the existence of two significantly distinct timescales:one is the fast timescale of carr...Asymptotic theory for the circuit envelope analysis is developed in this paper.A typical feature of circuit envelope analysis is the existence of two significantly distinct timescales:one is the fast timescale of carrier wave,and the other is the slow timescale of modulation signal.We first perform pro forma asymptotic analysis for both the driven and autonomous systems.Then resorting to the Floquet theory of periodic operators,we make a rigorous justification for first-order asymptotic approximations.It turns out that these asymptotic results are valid at least on the slow timescale.To speed up the computation of asymptotic approximations,we propose a periodization technique,which renders the possibility of utilizing the NUFFT algorithm.Numerical experiments are presented,and the results validate the theoretical findings.展开更多
In this paper we consider the numerical solution of the one-dimensional heat equation on unbounded domains. First an exact semi-discrete artificial boundary condition is derived by discretizing the time variable with ...In this paper we consider the numerical solution of the one-dimensional heat equation on unbounded domains. First an exact semi-discrete artificial boundary condition is derived by discretizing the time variable with the Crank-Nicolson method. The semi-discretized heat equation equipped with this boundary condition is then proved to be unconditionally stable, and its solution is shown to have second-order accuracy. In order to reduce the computational cost, we develop a new fast evaluation method for the convolution operation involved in the exact semi-discrete artificial boundary condition. A great advantage of this method is that the unconditional stability held by the semi-discretized heat equation is preserved. An error estimate is also given to show the dependence of numerical errors on the time step and the approximation accuracy of the convolution kernel. Finally, a simple numerical example is presented to validate the theoretical results.展开更多
The numerical computation of nonlocal Schrödinger equations (SEs) on the whole real axis is considered. Based on the artifcial boundary method, we frst derive the exact artifcial nonrefecting boundary conditions....The numerical computation of nonlocal Schrödinger equations (SEs) on the whole real axis is considered. Based on the artifcial boundary method, we frst derive the exact artifcial nonrefecting boundary conditions. For the numerical implementation, we employ the quadrature scheme proposed in Tian and Du (SIAM J Numer Anal 51:3458-3482, 2013) to discretize the nonlocal operator, and apply the z-transform to the discrete nonlocal system in an exterior domain, and derive an exact solution expression for the discrete system. This solution expression is referred to our exact nonrefecting boundary condition and leads us to reformulate the original infnite discrete system into an equivalent fnite discrete system. Meanwhile, the trapezoidal quadrature rule is introduced to discretize the contour integral involved in exact boundary conditions. Numerical examples are fnally provided to demonstrate the efectiveness of our approach.展开更多
In this paper, we formulate interface problem and Neumann elliptic boundary value problem into a form of linear operator equations with self-adjoint positive definite op- erators. We prove that in the discrete level t...In this paper, we formulate interface problem and Neumann elliptic boundary value problem into a form of linear operator equations with self-adjoint positive definite op- erators. We prove that in the discrete level the condition number of these operators is independent of the mesh size. Therefore, given a prescribed error tolerance, the classical conjugate gradient algorithm converges within a fixed number of iterations. The main computation task at each iteration is to solve a Dirichlet Poisson boundary value problem in a rectangular domain, which can be furnished with fast Poisson solver. The overall computational complexity is essentially of linear scaling.展开更多
The coherent states approximation for one-dimensional multi-phased wave functions is considered in this paper.The wave functions are assumed to oscillate on a characteristic wave length O(∈)withǫ≪1.A parameter recove...The coherent states approximation for one-dimensional multi-phased wave functions is considered in this paper.The wave functions are assumed to oscillate on a characteristic wave length O(∈)withǫ≪1.A parameter recovery algorithm is first developed for single-phased wave function based on a moment asymptotic analysis.This algorithm is then extended to multi-phased wave functions.If cross points or caustics exist,the coherent states approximation algorithm based on the parameter recovery will fail in some local regions.In this case,we resort to the windowed Fourier transform technique,and propose a composite coherent states approximation method.Numerical experiments show that the number of coherent states derived by the proposedmethod is much less than that by the directwindowed Fourier transform technique.展开更多
We extend the theory of global geometrical optics method, proposed originally for the linear scalar high-frequency wave-like equations in [Commun. Math. Sci., 2013, 11(1): 105-140], to the more general vector- valu...We extend the theory of global geometrical optics method, proposed originally for the linear scalar high-frequency wave-like equations in [Commun. Math. Sci., 2013, 11(1): 105-140], to the more general vector- valued Schrodinger problems in the semi-classical regime. The key ingredient in the global geometrical optics method is a moving frame technique in the phase space. The governing equation is transformed into a new equation but of the same type when expressed in any moving frame induced by the underlying Hamiltonian flow. The classical Wentzel-Kramers-Brillouin (WKB) analysis benefits from this treatment as it maintains valid for arbitrary but fixed evolutionary time. It turns out that a WKB-type function defined merely on the underlying Lagrangian submanifold can be obtained with the help of this moving frame technique, and from which a uniform first-order approximation of the wave field can be derived, even around caustics. The general theory is exemplified by two specific instances. One is the two-level SchrSdinger system and the other is the periodic SchrSdinger equation. Numerical tests validate the theoretical results.展开更多
In this paper we study numerical issues related to the Schr ¨odinger equationwith sinusoidal potentials at infinity. An exact absorbing boundary condition in a formof Dirichlet-to-Neumann mapping is derived. This...In this paper we study numerical issues related to the Schr ¨odinger equationwith sinusoidal potentials at infinity. An exact absorbing boundary condition in a formof Dirichlet-to-Neumann mapping is derived. This boundary condition is based on ananalytical expression of the logarithmic derivative of the Floquet solution toMathieu’sequation, which is completely new to the author’s knowledge. The implementationof this exact boundary condition is discussed, and a fast evaluation method is used toreduce the computation burden arising from the involved half-order derivative operator.Some numerical tests are given to showthe performance of the proposed absorbingboundary conditions.展开更多
Based on the numerical evidences,an analytical expression of the Dirichletto-Neumann mapping in the form of infinite product was first conjectured for the onedimensional characteristic Schrodinger equation with a sinu...Based on the numerical evidences,an analytical expression of the Dirichletto-Neumann mapping in the form of infinite product was first conjectured for the onedimensional characteristic Schrodinger equation with a sinusoidal potential in[Commun.Comput.Phys.,3(3):641-658,2008].It was later extended for the general secondorder characteristic elliptic equations with symmetric periodic coefficients in[J.Comp.Phys.,227:6877-6894,2008].In this paper,we present a proof for this Dirichlet-toNeumann mapping.展开更多
In this work we improve and extend a technique named recursive doubling procedure developed by Yuan and Lu[J.Lightwave Technology 25(2007),3649-3656]for solving periodic array problems.It turns out that when the perio...In this work we improve and extend a technique named recursive doubling procedure developed by Yuan and Lu[J.Lightwave Technology 25(2007),3649-3656]for solving periodic array problems.It turns out that when the periodic array contains an infinite number of periodic cells,our method gives a fast evaluation of the exact boundary Robin-to-Robin mapping if the wave number is complex,or real but in the stop bands.This technique is also used to solve the time-dependent Schr¨odinger equation in both one and two dimensions,when the periodic potential functions have some local defects.展开更多
This paper introduces an extension of the time-splitting spectral(TSSP)method for solving a general model of three-wave optical interactions,which typically arises from nonlinear optics,when the transmission media has...This paper introduces an extension of the time-splitting spectral(TSSP)method for solving a general model of three-wave optical interactions,which typically arises from nonlinear optics,when the transmission media has competing quadratic and cubic nonlinearities.The key idea is to formulate the terms related to quadratic and cubic nonlinearities into a Hermitian matrix in a proper way,which allows us to develop an explicit and unconditionally stable numerical method for the problem.Furthermore,the method is spectral accurate in transverse coordinates and second-order accurate in propagation direction,is time reversible and time transverse invariant,and conserves the total wave energy(or power or the norm of the solutions)in discretized level.Numerical examples are presented to demonstrate the efficiency and high resolution of the method.Finally the method is applied to study dynamics and interactions between three-wave solitons and continuous waves in media with competing quadratic and cubic nonlinearities in one dimension(1D)and 2D.展开更多
基金This work is supported partly by the Special Funds for Major State Basic Research Projects of China and the National Science Foundation of China.
文摘In this paper, nonreflecting artificial boundary conditions are considered for an acoustic problem in three dimensions. With the technique of Fourier decomposition under the orthogonal basis of spherical harmonics, three kinds of equivalent exact artificial boundary conditions are obtained on a spherical artificial boundary. A numerical test is presented to show the performance of the method.
基金supported by the National Key R&D Program of China(Grant Nos.2019YFA0709600,2019YFA0709602)by the Beijing Natural Science Foundation(Grant No.Z220003).
文摘Asymptotic theory for the circuit envelope analysis is developed in this paper.A typical feature of circuit envelope analysis is the existence of two significantly distinct timescales:one is the fast timescale of carrier wave,and the other is the slow timescale of modulation signal.We first perform pro forma asymptotic analysis for both the driven and autonomous systems.Then resorting to the Floquet theory of periodic operators,we make a rigorous justification for first-order asymptotic approximations.It turns out that these asymptotic results are valid at least on the slow timescale.To speed up the computation of asymptotic approximations,we propose a periodization technique,which renders the possibility of utilizing the NUFFT algorithm.Numerical experiments are presented,and the results validate the theoretical findings.
基金Acknowledgments. This work is supported partially by the National Natural Science Foundation of China under Grant No. 10401020, the Alexander von Humboldt Foundation, and the Key Project of China High Performance Scientific Computation Research 2005CB321701.
文摘In this paper we consider the numerical solution of the one-dimensional heat equation on unbounded domains. First an exact semi-discrete artificial boundary condition is derived by discretizing the time variable with the Crank-Nicolson method. The semi-discretized heat equation equipped with this boundary condition is then proved to be unconditionally stable, and its solution is shown to have second-order accuracy. In order to reduce the computational cost, we develop a new fast evaluation method for the convolution operation involved in the exact semi-discrete artificial boundary condition. A great advantage of this method is that the unconditional stability held by the semi-discretized heat equation is preserved. An error estimate is also given to show the dependence of numerical errors on the time step and the approximation accuracy of the convolution kernel. Finally, a simple numerical example is presented to validate the theoretical results.
基金Jiwei Zhang is partially supported by the National Natural Science Foundation of China under Grant No.11771035the NSAF U1530401+3 种基金the Natural Science Foundation of Hubei Province No.2019CFA007Xiangtan University 2018ICIP01Chunxiong Zheng is partially supported by Natural Science Foundation of Xinjiang Autonom ous Region under No.2019D01C026the National Natural Science Foundation of China under Grant Nos.11771248 and 91630205。
文摘The numerical computation of nonlocal Schrödinger equations (SEs) on the whole real axis is considered. Based on the artifcial boundary method, we frst derive the exact artifcial nonrefecting boundary conditions. For the numerical implementation, we employ the quadrature scheme proposed in Tian and Du (SIAM J Numer Anal 51:3458-3482, 2013) to discretize the nonlocal operator, and apply the z-transform to the discrete nonlocal system in an exterior domain, and derive an exact solution expression for the discrete system. This solution expression is referred to our exact nonrefecting boundary condition and leads us to reformulate the original infnite discrete system into an equivalent fnite discrete system. Meanwhile, the trapezoidal quadrature rule is introduced to discretize the contour integral involved in exact boundary conditions. Numerical examples are fnally provided to demonstrate the efectiveness of our approach.
基金The work of the first author was supported by the National Natural Science Foundation of China (91330203). The work of the second author was supported by the National Natural Science Foundation of China (10371218) and the Initiative Scientific Research Program of Tsinghua University.
文摘In this paper, we formulate interface problem and Neumann elliptic boundary value problem into a form of linear operator equations with self-adjoint positive definite op- erators. We prove that in the discrete level the condition number of these operators is independent of the mesh size. Therefore, given a prescribed error tolerance, the classical conjugate gradient algorithm converges within a fixed number of iterations. The main computation task at each iteration is to solve a Dirichlet Poisson boundary value problem in a rectangular domain, which can be furnished with fast Poisson solver. The overall computational complexity is essentially of linear scaling.
基金The authors thank Prof.Shi Jin for introducing this research project to them.They are also grateful to Prof.Xuguang Lu for the helpful discussion on asymptotic analysis,and the anonymous referees for their valuable constructive suggestions.D.Yin was supported by the National Natural Science Foundation of China under Grant No.10901091C.Zheng was supported by the National Natural Science Foundation of China under Grant No.10971115.
文摘The coherent states approximation for one-dimensional multi-phased wave functions is considered in this paper.The wave functions are assumed to oscillate on a characteristic wave length O(∈)withǫ≪1.A parameter recovery algorithm is first developed for single-phased wave function based on a moment asymptotic analysis.This algorithm is then extended to multi-phased wave functions.If cross points or caustics exist,the coherent states approximation algorithm based on the parameter recovery will fail in some local regions.In this case,we resort to the windowed Fourier transform technique,and propose a composite coherent states approximation method.Numerical experiments show that the number of coherent states derived by the proposedmethod is much less than that by the directwindowed Fourier transform technique.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 11371218, 91630205).
文摘We extend the theory of global geometrical optics method, proposed originally for the linear scalar high-frequency wave-like equations in [Commun. Math. Sci., 2013, 11(1): 105-140], to the more general vector- valued Schrodinger problems in the semi-classical regime. The key ingredient in the global geometrical optics method is a moving frame technique in the phase space. The governing equation is transformed into a new equation but of the same type when expressed in any moving frame induced by the underlying Hamiltonian flow. The classical Wentzel-Kramers-Brillouin (WKB) analysis benefits from this treatment as it maintains valid for arbitrary but fixed evolutionary time. It turns out that a WKB-type function defined merely on the underlying Lagrangian submanifold can be obtained with the help of this moving frame technique, and from which a uniform first-order approximation of the wave field can be derived, even around caustics. The general theory is exemplified by two specific instances. One is the two-level SchrSdinger system and the other is the periodic SchrSdinger equation. Numerical tests validate the theoretical results.
基金the National Natural Science Foundation of China underGrant No. 10401020.
文摘In this paper we study numerical issues related to the Schr ¨odinger equationwith sinusoidal potentials at infinity. An exact absorbing boundary condition in a formof Dirichlet-to-Neumann mapping is derived. This boundary condition is based on ananalytical expression of the logarithmic derivative of the Floquet solution toMathieu’sequation, which is completely new to the author’s knowledge. The implementationof this exact boundary condition is discussed, and a fast evaluation method is used toreduce the computation burden arising from the involved half-order derivative operator.Some numerical tests are given to showthe performance of the proposed absorbingboundary conditions.
基金The authors would like to thank Prof.Matthias Ehrhardt for the inspiring discussion on this work.C.Zheng was supported by the National Natural Science Foundation of China under Grant No.11371218.
文摘Based on the numerical evidences,an analytical expression of the Dirichletto-Neumann mapping in the form of infinite product was first conjectured for the onedimensional characteristic Schrodinger equation with a sinusoidal potential in[Commun.Comput.Phys.,3(3):641-658,2008].It was later extended for the general secondorder characteristic elliptic equations with symmetric periodic coefficients in[J.Comp.Phys.,227:6877-6894,2008].In this paper,we present a proof for this Dirichlet-toNeumann mapping.
文摘In this work we improve and extend a technique named recursive doubling procedure developed by Yuan and Lu[J.Lightwave Technology 25(2007),3649-3656]for solving periodic array problems.It turns out that when the periodic array contains an infinite number of periodic cells,our method gives a fast evaluation of the exact boundary Robin-to-Robin mapping if the wave number is complex,or real but in the stop bands.This technique is also used to solve the time-dependent Schr¨odinger equation in both one and two dimensions,when the periodic potential functions have some local defects.
基金support from the National University of Singapore grant No.R-146-000-081-112C.Zheng acknowledges the support by National Natural Science Foundation of China(No.10401020)his extended visit at National University of Singapore.
文摘This paper introduces an extension of the time-splitting spectral(TSSP)method for solving a general model of three-wave optical interactions,which typically arises from nonlinear optics,when the transmission media has competing quadratic and cubic nonlinearities.The key idea is to formulate the terms related to quadratic and cubic nonlinearities into a Hermitian matrix in a proper way,which allows us to develop an explicit and unconditionally stable numerical method for the problem.Furthermore,the method is spectral accurate in transverse coordinates and second-order accurate in propagation direction,is time reversible and time transverse invariant,and conserves the total wave energy(or power or the norm of the solutions)in discretized level.Numerical examples are presented to demonstrate the efficiency and high resolution of the method.Finally the method is applied to study dynamics and interactions between three-wave solitons and continuous waves in media with competing quadratic and cubic nonlinearities in one dimension(1D)and 2D.