期刊文献+

Numerical Computations of Nonlocal Schrodinger Equations on the Real Line 被引量:1

下载PDF
导出
摘要 The numerical computation of nonlocal Schrödinger equations (SEs) on the whole real axis is considered. Based on the artifcial boundary method, we frst derive the exact artifcial nonrefecting boundary conditions. For the numerical implementation, we employ the quadrature scheme proposed in Tian and Du (SIAM J Numer Anal 51:3458-3482, 2013) to discretize the nonlocal operator, and apply the z-transform to the discrete nonlocal system in an exterior domain, and derive an exact solution expression for the discrete system. This solution expression is referred to our exact nonrefecting boundary condition and leads us to reformulate the original infnite discrete system into an equivalent fnite discrete system. Meanwhile, the trapezoidal quadrature rule is introduced to discretize the contour integral involved in exact boundary conditions. Numerical examples are fnally provided to demonstrate the efectiveness of our approach.
出处 《Communications on Applied Mathematics and Computation》 2020年第2期241-260,共20页 应用数学与计算数学学报(英文)
基金 Jiwei Zhang is partially supported by the National Natural Science Foundation of China under Grant No.11771035 the NSAF U1530401 the Natural Science Foundation of Hubei Province No.2019CFA007 Xiangtan University 2018ICIP01 Chunxiong Zheng is partially supported by Natural Science Foundation of Xinjiang Autonom ous Region under No.2019D01C026 the National Natural Science Foundation of China under Grant Nos.11771248 and 91630205。
  • 相关文献

参考文献2

二级参考文献8

  • 1Han, HD,Yin, DS.NUMERICAL SOLUTIONS OF PARABOLIC PROBLEMS ON UNBOUNDED 3-D SPATIAL DOMAIN[J].Journal of Computational Mathematics,2005,23(5):449-462. 被引量:5
  • 2B. Alpert, L. Greengard and T. Hagstrom, Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation, SIAM J. Numer. Anal., 37 (2000), 1138-1164. 被引量:1
  • 3A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., 23(1980), 707-725. 被引量:1
  • 4B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31(1977), 629-651. 被引量:1
  • 5I.S. Gradshteyn and M. Ryzhik, Table of Integrals, Series and Products, Academic Press, 1980. 被引量:1
  • 6M. J. Grote and J. B. Keller, Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. Appl. Math., 55(1995), 280-297. 被引量:1
  • 7R.L. Higdon, Absorbing boundary-conditions for diffence approximations to the multidimensional wave-equation, Math. Comput. 47(1986), 437-459. 被引量:1
  • 8J.C. Nedelec, Acoustic and electromagnetic equations: integral representations for harmonic problems, Springer, New York, 2001. 被引量:1

共引文献8

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部