This work studies the stability and hidden dynamics of the nonlinear hydro-turbine governing system with an output limiting link,and propose a new six-dimensional system,which exhibits some hidden attractors.The param...This work studies the stability and hidden dynamics of the nonlinear hydro-turbine governing system with an output limiting link,and propose a new six-dimensional system,which exhibits some hidden attractors.The parameter switching algorithm is used to numerically study the dynamic behaviors of the system.Moreover,it is investigated that for some parameters the system with a stable equilibrium point can generate strange hidden attractors.A self-excited attractor with the change of its parameters is also recognized.In addition,numerical simulations are carried out to analyze the dynamic behaviors of the proposed system by using the Lyapunov exponent spectra,Lyapunov dimensions,bifurcation diagrams,phase space orbits,and basins of attraction.Consequently,the findings in this work show that the basins of hidden attractors are tiny for which the standard computational procedure for localization is unavailable.These simulation results are conducive to better understanding of hidden chaotic attractors in higher-dimensional dynamical systems,and are also of great significance in revealing chaotic oscillations such as uncontrolled speed adjustment in the operation of hydropower station due to small changes of initial values.展开更多
Segmentation of moving objects in a video sequence is a basic task for application of computer vision. However, shadows extracted along with the objects can result in large errors in object localization and recognitio...Segmentation of moving objects in a video sequence is a basic task for application of computer vision. However, shadows extracted along with the objects can result in large errors in object localization and recognition. In this paper, we propose a method of moving shadow detection based on edge information, which can effectively detect the cast shadow of a moving vehicle in a traffic scene. Having confirmed shadows existing in a figure, we execute the shadow removal algorithm proposed in this paper to segment the shadow from the foreground. The shadow eliminating algorithm removes the boundary of the cast shadow and preserves object edges firstly; secondly, it reconstructs coarse object shapes based on the edge information of objects; and finally, it extracts the cast shadow by subtracting the moving object from the change detection mask and performs further processing. The proposed method has been further tested on images taken under different shadow orientations, vehicle colors and vehicle sizes, and the results have revealed that shadows can be successfully eliminated and thus good video segmentation can be obtained.展开更多
基金supported by the National Key R&D Program of China(2022YFA1403500,2018YFA0703700,2022YFA1405600,and 2021YFA1202900)the National Natural Science Foundation of China(52025023,12274456,51991342,52021006,92163206,11888101,T2188101,12104018,52250398,52203331,and 91964203)+2 种基金Guangdong Major Project of Basic and Applied Basic Research(2021B0301030002)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB33000000)Beijing Municipal Science and Technology Project(Z221100005822003)。
基金the Fundamental Research Funds for the Northwest A&F University(Grant No./Z1090220172)the Scientific Research Foundation of the Natural Science Foundation of Shaanxi Province,China(Grant No.2019JLP-24)+1 种基金the Shaanxi Province Innovation Talent Promotion PlanScience and Technology Innovation Team,China(Grant No.2020TD-025)the Water Conservancy Science and Technology Program of Shaanxi Province,China(Grant No.2018slkj-9)。
文摘This work studies the stability and hidden dynamics of the nonlinear hydro-turbine governing system with an output limiting link,and propose a new six-dimensional system,which exhibits some hidden attractors.The parameter switching algorithm is used to numerically study the dynamic behaviors of the system.Moreover,it is investigated that for some parameters the system with a stable equilibrium point can generate strange hidden attractors.A self-excited attractor with the change of its parameters is also recognized.In addition,numerical simulations are carried out to analyze the dynamic behaviors of the proposed system by using the Lyapunov exponent spectra,Lyapunov dimensions,bifurcation diagrams,phase space orbits,and basins of attraction.Consequently,the findings in this work show that the basins of hidden attractors are tiny for which the standard computational procedure for localization is unavailable.These simulation results are conducive to better understanding of hidden chaotic attractors in higher-dimensional dynamical systems,and are also of great significance in revealing chaotic oscillations such as uncontrolled speed adjustment in the operation of hydropower station due to small changes of initial values.
基金The work was supported by the National Natural Science Foundation of PRC (No.60574033)the National Key Fundamental Research & Development Programs(973)of PRC (No.2001CB309403)
文摘Segmentation of moving objects in a video sequence is a basic task for application of computer vision. However, shadows extracted along with the objects can result in large errors in object localization and recognition. In this paper, we propose a method of moving shadow detection based on edge information, which can effectively detect the cast shadow of a moving vehicle in a traffic scene. Having confirmed shadows existing in a figure, we execute the shadow removal algorithm proposed in this paper to segment the shadow from the foreground. The shadow eliminating algorithm removes the boundary of the cast shadow and preserves object edges firstly; secondly, it reconstructs coarse object shapes based on the edge information of objects; and finally, it extracts the cast shadow by subtracting the moving object from the change detection mask and performs further processing. The proposed method has been further tested on images taken under different shadow orientations, vehicle colors and vehicle sizes, and the results have revealed that shadows can be successfully eliminated and thus good video segmentation can be obtained.