This work presents an analysis of the research conducted in many countries in recent years on the so-called Gatchina discharge.The findings indicate that the Gatchina discharge exhibits the majority of the characteris...This work presents an analysis of the research conducted in many countries in recent years on the so-called Gatchina discharge.The findings indicate that the Gatchina discharge exhibits the majority of the characteristics of natural ball lightning,making it the most effective method for reproducing and studying this phenomenon.To a large extent,our new results are based on experiments performed for the first time to visualize dust particles arising in an erosive emission,as well as the formation of vortex flows.These experiments make it possible to explain the ability of the Gatchina discharge to maintain its shape for a long time in the afterglow.展开更多
The Gatchina discharge phenomenon holds significant promise as a laboratory model for simulating ball lightning.However,crucial aspects concerning the plasma components of the resulting afterglow remain unresolved.Not...The Gatchina discharge phenomenon holds significant promise as a laboratory model for simulating ball lightning.However,crucial aspects concerning the plasma components of the resulting afterglow remain unresolved.Notably,the measurement of the electron density,a critical parameter,has not been fully achieved thus far.In this study,microwave diagnostics and video recording were employed during a pulsed Gatchina discharge,along with synchronous measurement of discharge current and voltage.Distinct antennas were positioned at different heights to enable separate diagnosis of the discharge and the ensuing long-lived afterglow.The findings revealed that during the active phase of the Gatchina discharge,the plasma density was substantial enough to cause reflection of an electromagnetic wave with a frequency of 20 GHz from this highly conductive object.In the afterglow,the signal experienced only a moderate weakening of 10–20 percent,facilitating the determination of the time dependence of average electron density during the afterglow's passage between the two antennas.These measurements verified the unusually slow plasma decay in the afterglow of the Gatchina discharge,suggesting the potential significance of chemi-ionisation processes involving long-lived(metastable)particles.展开更多
We demonstrate a method to generate tunable triangular and honeycomb plasma structures via dielectric barrier discharge with uniquely designed mesh-liquid electrodes.A rapid reconfiguration between the triangular latt...We demonstrate a method to generate tunable triangular and honeycomb plasma structures via dielectric barrier discharge with uniquely designed mesh-liquid electrodes.A rapid reconfiguration between the triangular lattice and honeycomb lattice has been realized.Novel structures comprised of triangular plasma elements have been observed and a robust angular reorientation of the triangular plasma elements withθ=π/3 is suggested.An active control on the geometrical shape,size and angular orientation of the plasma elements has been achieved.Moreover,the formation mechanism of different plasma structures is studied by spatial-temporal resolved measurements using a high-speed camera.The photonic band diagrams of the plasma structures are calculated by use of finite element method and two large omnidirectional band gaps have been obtained for honeycomb lattices,demonstrating that such plasma structures can be potentially used as plasma photonic crystals to manipulate the propagation of microwaves.The results may offer new strategies for engineering the band gaps and provide enlightenments on designing new types of 2D and possibly 3D metamaterials in other fields.展开更多
A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations...A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations of dust particles are coupled.The electrical interaction between charged dust particles is considered in the model.The time evolution of radial distributions of dust density,plasma density,the radial component of electric field and the forces acting on dust particles when dust density tends to be stable,are obtained and analyzed under different discharge currents and dust particle radii.It is shown that the dust density structure is determined mainly by the radial electrostatic force,thermophoretic force and ion drag force in the discharge tube,and both discharge current and dust particle radius have an obvious effect on the transport processes of dust particles.The dust particles gather in the central region of the discharge tube for low discharge current and small dust radius,then dust voids are formed and become wider when the discharge current and dust radius increase.The plasma parameters in the dust gathering region are obviously affected by the dust particles due to the charging processes of electrons and ions to the dust surface.展开更多
In order to solve the thickness dependence of plasma absorption of electromagnetic waves and further reduce the backward radar scattering cross section(RCS)of the target,we designed a novel composite structure of a me...In order to solve the thickness dependence of plasma absorption of electromagnetic waves and further reduce the backward radar scattering cross section(RCS)of the target,we designed a novel composite structure of a metasurface and plasma.A metasurface with three absorption peaks is designed by means of an equivalent circuit based on an electromagnetic resonance type metamaterial absorber.The reflection and absorption of the composite structure are numerically and experimentally verified.The finite integration method was used to simulate a composite structure of finite size to obtain the RCS.The experimental measurements of electromagnetic wave reflection were conducted by a vector network analyzer(Keysight N5234A)and horn antennas,etc.The research showed that the absorption capacity of this composite structure was substantially improved compared to either the plasma or the metasurface,and it is more convenient for application due to its low plasma thickness requirement and easy fabrication.展开更多
Measurements of the plasma parameters of coaxial gridded hollow electrode alternating current(AC)discharge helium plasma were carried out using an improved probe diagnostic technology.The measurements were performed u...Measurements of the plasma parameters of coaxial gridded hollow electrode alternating current(AC)discharge helium plasma were carried out using an improved probe diagnostic technology.The measurements were performed under well-defined discharge conditions(chamber geometry,input power,AC power frequency,and external electrical characteristics).The problems encountered in describing the characteristics of AC discharge in many probe diagnostic methods were addressed by using an improved probe diagnostics design.This design can also be applied to the measurement of plasma parameters in many kinds of plasma sources in which the probe potential fluctuates with the discharge current.Several parameters of the hollow electrode AC helium discharge plasma were measured,including the plasma density,electron temperature,plasma density profiles,and changes in plasma density at different input power values and helium pressures.The characteristics of the coaxial gridded hollow electrode plasma determined by the experiments are suitable for comparison with plasma simulations,and for use in many applications of hollow cathode plasma.展开更多
Plasma photonic crystals designed in this paper are composed of gas discharge tubes to control the flow of electromagnetic waves.The band structures calculated by the finite element method are consistent with the expe...Plasma photonic crystals designed in this paper are composed of gas discharge tubes to control the flow of electromagnetic waves.The band structures calculated by the finite element method are consistent with the experimental results which have two distinct attenuation peaks in the ranges of 1-2.5 GHz and 5-6 GHz.Electromagnetic parameters of the plasma are extracted by the Nicolson-Ross-Weir method and effective medium theory.The measured electron density is between 1×1011 cm-3 and1×1012 cm-3,which verifies the correctness of the parameter used in the simulation,and the collision frequency is near 1.5×1010 Hz.As the band structures are corroborated by the measured scattering parameters,we introduce the concept of photonic topological insulator based on the quantum Valley Hall effect into the plasma photonic crystal.A valley-dependent plasma photonic crystal with hexagonal lattice is constructed,and the phase transition of the valley K(K’)occurs by breaking the spatial inversion symmetry.Valley-spin locked topological edge states are generated and excited by chiral sources.The frequency of the non-bulk state can be dynamically regulated by the electron density.This concept paves the way for novel,tunable topological edge states.More interestingly,the Dirac cone is broken when the electron density increases to 3.1×1012 cm-3,which distinguishes from the methods of applying a magnetic field and changing the symmetry of the point group.展开更多
The electron kinetic model for investigating the transport and ionization rate coefficients of argon glow discharge dusty plasma is developed from the Boltzmann equation.Both of the electron-neutral and electron-dust ...The electron kinetic model for investigating the transport and ionization rate coefficients of argon glow discharge dusty plasma is developed from the Boltzmann equation.Both of the electron-neutral and electron-dust collisions are considered as collision terms in the kinetic equation.The kinetic equation is simplified by employing the local approximation and nonlocal approach under the same discharge conditions,and the corresponding simplified kinetic equations are known as local and nonlocal kinetic equations respectively.Then the electron energy distribution function(EEDF)is obtained by numerically solving the local and nonlocal kinetic equations and the dust charging equations simultaneously.Based on the obtained EEDFs,the effective electron temperature,electron mobility,electron diffusion coefficient and ionization rate coefficient are calculated for different discharge conditions.It is shown that the EEDFs calculated from the local kinetic model clearly differ from the nonlocal EEDFs and both the local and nonlocal EEDFs are also clearly different with Maxwellian distributions.The appearance of dust particles results in an obvious decrease of high energy electrons and increase of low energy electrons when axial electric field is low.With the increase of axial electric field,the influence of dust particles on the EEDFs becomes smaller.The electron mobility and diffusion coefficients calculated on the basis of local and nonlocal EEDFs do not differ greatly to the dust-free ones.While,when dust density nd=10^6 cm^?3,the electron mobility increases obviously compared with the dust-free results at low axial electric field and decreases with the increasing axial electric field until they are close to the dust-free ones.Meanwhile,electron diffusion coefficients for dusty case become smaller and decrease with the increasing axial electric field.The ionization rate coefficients decrease when dust particles are introduced and they approach the dust-free results gradually with the increasing axial electric field.展开更多
The research herein examined the results of numerical simulations of the positive column of a glow discharge in argon dusty plasma using COMSOL Multiphysics software under conditions similar to the project known as PK...The research herein examined the results of numerical simulations of the positive column of a glow discharge in argon dusty plasma using COMSOL Multiphysics software under conditions similar to the project known as PK-4.Various scenarios dealing with formations of spatial distributions of densities and fluxes for charged particles were studied,and evaluations of the influence of dust particles on the discharge were obtained in a wide range of dust densities.Two extreme cases were distinguished:weak dust influence when the densities,fluxes and electric field profiles are not perturbed,and strong dust influence when all three density profiles(electrons,ions and charged dust)in the dust cloud are similar(parallel)to each other,resulting in all created charges in the dust cloud being lost inside the cloud.In such a case,the ambipolar field and the transport of charged particles are decreased in the dust cloud,and any ambipolar flux is almost absent within the cloud.展开更多
This paper reports the use of machine learning to enhance the diagnosis of a dusty plasma.Dust in a plasma has a large impact on the properties of the plasma.According to a probe diagnostic experiment on a dust-free p...This paper reports the use of machine learning to enhance the diagnosis of a dusty plasma.Dust in a plasma has a large impact on the properties of the plasma.According to a probe diagnostic experiment on a dust-free plasma combined with machine learning,an experiment on a dusty plasma is designed and carried out.Using a specific experimental device,dusty plasma with a stable and controllable dust particle density is generated.A Langmuir probe is used to measure the electron density and electron temperature under different pressures,discharge currents,and dust particle densities.The diagnostic result is processed through a machine learning algorithm,and the error of the predicted results under different pressures and discharge currents is analyzed,from which the law of the machine learning results changing with the pressure and discharge current is obtained.Finally,the results are compared with theoretical simulations to further analyze the properties of the electron density and temperature of the dusty plasma.展开更多
A variational method is introduced to analyze the transmissivity of an electromagnetic wave propagating in the magnetized plasma sheath. The plasma density is modeled by two parabolic inhomogeneous regions separated b...A variational method is introduced to analyze the transmissivity of an electromagnetic wave propagating in the magnetized plasma sheath. The plasma density is modeled by two parabolic inhomogeneous regions separated by one homogeneous region. The Lagrangian density of the system is constructed based on the fluid energy density and the electromagnetic energy density.The total variation of the Lagrangian density is derived. The fluid and electromagnetic fields are numerically solved by expansion in piecewise polynomial function space. We investigate the effect of an external magnetic field on the transmissivity of the electromagnetic wave. It is found that the transmissivity is increased when an external magnetic field is applied. The dependence of transmissivity on the collision frequency between the electrons and the neutral particles has also been studied. We also show that the external magnetic field causes a shift in the critical frequency of the plasma sheath.展开更多
Based on a sandwich-like structure,a microhollow cathode discharge device is designed,and a stable discharge is realized by injecting helium into the discharge region of the device at atmospheric pressure.A wall probe...Based on a sandwich-like structure,a microhollow cathode discharge device is designed,and a stable discharge is realized by injecting helium into the discharge region of the device at atmospheric pressure.A wall probe is used to determine the relevant parameters of the plasma generated by the device,such as particle density,electron temperature,and the electron distribution function.At the same time,a sink parameter is used to correct the electron distribution function of the wall-probe diagnostics,and to further study the relationship between electron density and the electron temperature of the corrected electron distribution function.展开更多
基金supported by Province Key R&D Program of Heilongjiang(No.JD22A005)National Natural Science Foundation of China(Nos.12175050 and 12205067)。
文摘This work presents an analysis of the research conducted in many countries in recent years on the so-called Gatchina discharge.The findings indicate that the Gatchina discharge exhibits the majority of the characteristics of natural ball lightning,making it the most effective method for reproducing and studying this phenomenon.To a large extent,our new results are based on experiments performed for the first time to visualize dust particles arising in an erosive emission,as well as the formation of vortex flows.These experiments make it possible to explain the ability of the Gatchina discharge to maintain its shape for a long time in the afterglow.
基金National Natural Science Foundation of China,Grant/Award Numbers:12175050,12205067Fundamental Research Funds for the Central Universities,Grant/Award Number:HIT.OCEF.2022036。
文摘The Gatchina discharge phenomenon holds significant promise as a laboratory model for simulating ball lightning.However,crucial aspects concerning the plasma components of the resulting afterglow remain unresolved.Notably,the measurement of the electron density,a critical parameter,has not been fully achieved thus far.In this study,microwave diagnostics and video recording were employed during a pulsed Gatchina discharge,along with synchronous measurement of discharge current and voltage.Distinct antennas were positioned at different heights to enable separate diagnosis of the discharge and the ensuing long-lived afterglow.The findings revealed that during the active phase of the Gatchina discharge,the plasma density was substantial enough to cause reflection of an electromagnetic wave with a frequency of 20 GHz from this highly conductive object.In the afterglow,the signal experienced only a moderate weakening of 10–20 percent,facilitating the determination of the time dependence of average electron density during the afterglow's passage between the two antennas.These measurements verified the unusually slow plasma decay in the afterglow of the Gatchina discharge,suggesting the potential significance of chemi-ionisation processes involving long-lived(metastable)particles.
基金supported by National Natural Science Foundation of China(Nos.11875014,11975089)the Natural Science Foundation of Hebei Province(Nos.A2021201010,A2021201003,and A2017201099)。
文摘We demonstrate a method to generate tunable triangular and honeycomb plasma structures via dielectric barrier discharge with uniquely designed mesh-liquid electrodes.A rapid reconfiguration between the triangular lattice and honeycomb lattice has been realized.Novel structures comprised of triangular plasma elements have been observed and a robust angular reorientation of the triangular plasma elements withθ=π/3 is suggested.An active control on the geometrical shape,size and angular orientation of the plasma elements has been achieved.Moreover,the formation mechanism of different plasma structures is studied by spatial-temporal resolved measurements using a high-speed camera.The photonic band diagrams of the plasma structures are calculated by use of finite element method and two large omnidirectional band gaps have been obtained for honeycomb lattices,demonstrating that such plasma structures can be potentially used as plasma photonic crystals to manipulate the propagation of microwaves.The results may offer new strategies for engineering the band gaps and provide enlightenments on designing new types of 2D and possibly 3D metamaterials in other fields.
基金supported by the Stable-Support Scientific Project of China Research Institute of Radiowave Propagation(No.132101W07)National Natural Science Foundation of China(No.12105251)National Key Laboratory Foundation Electromagnetic Environment(Nos.A382101001,A382101002 and A152101731-C02).
文摘A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations of dust particles are coupled.The electrical interaction between charged dust particles is considered in the model.The time evolution of radial distributions of dust density,plasma density,the radial component of electric field and the forces acting on dust particles when dust density tends to be stable,are obtained and analyzed under different discharge currents and dust particle radii.It is shown that the dust density structure is determined mainly by the radial electrostatic force,thermophoretic force and ion drag force in the discharge tube,and both discharge current and dust particle radius have an obvious effect on the transport processes of dust particles.The dust particles gather in the central region of the discharge tube for low discharge current and small dust radius,then dust voids are formed and become wider when the discharge current and dust radius increase.The plasma parameters in the dust gathering region are obviously affected by the dust particles due to the charging processes of electrons and ions to the dust surface.
基金financially supported by National Natural Science Foundation of China(No.12175050)the Foundation of National Key Laboratory of Electromagnetic Environment of China(No.202101003)。
文摘In order to solve the thickness dependence of plasma absorption of electromagnetic waves and further reduce the backward radar scattering cross section(RCS)of the target,we designed a novel composite structure of a metasurface and plasma.A metasurface with three absorption peaks is designed by means of an equivalent circuit based on an electromagnetic resonance type metamaterial absorber.The reflection and absorption of the composite structure are numerically and experimentally verified.The finite integration method was used to simulate a composite structure of finite size to obtain the RCS.The experimental measurements of electromagnetic wave reflection were conducted by a vector network analyzer(Keysight N5234A)and horn antennas,etc.The research showed that the absorption capacity of this composite structure was substantially improved compared to either the plasma or the metasurface,and it is more convenient for application due to its low plasma thickness requirement and easy fabrication.
基金National Natural Science Foundation of China(No.11775062).
文摘Measurements of the plasma parameters of coaxial gridded hollow electrode alternating current(AC)discharge helium plasma were carried out using an improved probe diagnostic technology.The measurements were performed under well-defined discharge conditions(chamber geometry,input power,AC power frequency,and external electrical characteristics).The problems encountered in describing the characteristics of AC discharge in many probe diagnostic methods were addressed by using an improved probe diagnostics design.This design can also be applied to the measurement of plasma parameters in many kinds of plasma sources in which the probe potential fluctuates with the discharge current.Several parameters of the hollow electrode AC helium discharge plasma were measured,including the plasma density,electron temperature,plasma density profiles,and changes in plasma density at different input power values and helium pressures.The characteristics of the coaxial gridded hollow electrode plasma determined by the experiments are suitable for comparison with plasma simulations,and for use in many applications of hollow cathode plasma.
基金supported by National Natural Science Foundation of China(No.12175050)。
文摘Plasma photonic crystals designed in this paper are composed of gas discharge tubes to control the flow of electromagnetic waves.The band structures calculated by the finite element method are consistent with the experimental results which have two distinct attenuation peaks in the ranges of 1-2.5 GHz and 5-6 GHz.Electromagnetic parameters of the plasma are extracted by the Nicolson-Ross-Weir method and effective medium theory.The measured electron density is between 1×1011 cm-3 and1×1012 cm-3,which verifies the correctness of the parameter used in the simulation,and the collision frequency is near 1.5×1010 Hz.As the band structures are corroborated by the measured scattering parameters,we introduce the concept of photonic topological insulator based on the quantum Valley Hall effect into the plasma photonic crystal.A valley-dependent plasma photonic crystal with hexagonal lattice is constructed,and the phase transition of the valley K(K’)occurs by breaking the spatial inversion symmetry.Valley-spin locked topological edge states are generated and excited by chiral sources.The frequency of the non-bulk state can be dynamically regulated by the electron density.This concept paves the way for novel,tunable topological edge states.More interestingly,the Dirac cone is broken when the electron density increases to 3.1×1012 cm-3,which distinguishes from the methods of applying a magnetic field and changing the symmetry of the point group.
基金National Natural Science Foundation of China(Nos.11775062 and 61601419)the Key Laboratory Foundation of National Key Laboratory of Electromagnetic Environment(No.614240319010303).
文摘The electron kinetic model for investigating the transport and ionization rate coefficients of argon glow discharge dusty plasma is developed from the Boltzmann equation.Both of the electron-neutral and electron-dust collisions are considered as collision terms in the kinetic equation.The kinetic equation is simplified by employing the local approximation and nonlocal approach under the same discharge conditions,and the corresponding simplified kinetic equations are known as local and nonlocal kinetic equations respectively.Then the electron energy distribution function(EEDF)is obtained by numerically solving the local and nonlocal kinetic equations and the dust charging equations simultaneously.Based on the obtained EEDFs,the effective electron temperature,electron mobility,electron diffusion coefficient and ionization rate coefficient are calculated for different discharge conditions.It is shown that the EEDFs calculated from the local kinetic model clearly differ from the nonlocal EEDFs and both the local and nonlocal EEDFs are also clearly different with Maxwellian distributions.The appearance of dust particles results in an obvious decrease of high energy electrons and increase of low energy electrons when axial electric field is low.With the increase of axial electric field,the influence of dust particles on the EEDFs becomes smaller.The electron mobility and diffusion coefficients calculated on the basis of local and nonlocal EEDFs do not differ greatly to the dust-free ones.While,when dust density nd=10^6 cm^?3,the electron mobility increases obviously compared with the dust-free results at low axial electric field and decreases with the increasing axial electric field until they are close to the dust-free ones.Meanwhile,electron diffusion coefficients for dusty case become smaller and decrease with the increasing axial electric field.The ionization rate coefficients decrease when dust particles are introduced and they approach the dust-free results gradually with the increasing axial electric field.
基金supported by National Natural Science Foundation of China (No. 11775062)
文摘The research herein examined the results of numerical simulations of the positive column of a glow discharge in argon dusty plasma using COMSOL Multiphysics software under conditions similar to the project known as PK-4.Various scenarios dealing with formations of spatial distributions of densities and fluxes for charged particles were studied,and evaluations of the influence of dust particles on the discharge were obtained in a wide range of dust densities.Two extreme cases were distinguished:weak dust influence when the densities,fluxes and electric field profiles are not perturbed,and strong dust influence when all three density profiles(electrons,ions and charged dust)in the dust cloud are similar(parallel)to each other,resulting in all created charges in the dust cloud being lost inside the cloud.In such a case,the ambipolar field and the transport of charged particles are decreased in the dust cloud,and any ambipolar flux is almost absent within the cloud.
基金financially supported by National Natural Science Foundation of China(Nos.11775062,11805130 and 11905125)the Shanghai Sailing Program(Nos.19YF1420900 and 18YF1422200)。
文摘This paper reports the use of machine learning to enhance the diagnosis of a dusty plasma.Dust in a plasma has a large impact on the properties of the plasma.According to a probe diagnostic experiment on a dust-free plasma combined with machine learning,an experiment on a dusty plasma is designed and carried out.Using a specific experimental device,dusty plasma with a stable and controllable dust particle density is generated.A Langmuir probe is used to measure the electron density and electron temperature under different pressures,discharge currents,and dust particle densities.The diagnostic result is processed through a machine learning algorithm,and the error of the predicted results under different pressures and discharge currents is analyzed,from which the law of the machine learning results changing with the pressure and discharge current is obtained.Finally,the results are compared with theoretical simulations to further analyze the properties of the electron density and temperature of the dusty plasma.
基金supported by the National Key Basic Research Program of China (No. 2014CB340203)
文摘A variational method is introduced to analyze the transmissivity of an electromagnetic wave propagating in the magnetized plasma sheath. The plasma density is modeled by two parabolic inhomogeneous regions separated by one homogeneous region. The Lagrangian density of the system is constructed based on the fluid energy density and the electromagnetic energy density.The total variation of the Lagrangian density is derived. The fluid and electromagnetic fields are numerically solved by expansion in piecewise polynomial function space. We investigate the effect of an external magnetic field on the transmissivity of the electromagnetic wave. It is found that the transmissivity is increased when an external magnetic field is applied. The dependence of transmissivity on the collision frequency between the electrons and the neutral particles has also been studied. We also show that the external magnetic field causes a shift in the critical frequency of the plasma sheath.
基金financially supported by National Natural Science Foundation of China(No.11775062)。
文摘Based on a sandwich-like structure,a microhollow cathode discharge device is designed,and a stable discharge is realized by injecting helium into the discharge region of the device at atmospheric pressure.A wall probe is used to determine the relevant parameters of the plasma generated by the device,such as particle density,electron temperature,and the electron distribution function.At the same time,a sink parameter is used to correct the electron distribution function of the wall-probe diagnostics,and to further study the relationship between electron density and the electron temperature of the corrected electron distribution function.