We installed two sets of Astronomical Site Monitoring Systems(ASMSs)at Lijiang Observatory(GMG),for the running of the 2.4-meter Lijiang optical telescope(LJT)and the 1.6-meter Multi-channel Photometric Survey Telesco...We installed two sets of Astronomical Site Monitoring Systems(ASMSs)at Lijiang Observatory(GMG),for the running of the 2.4-meter Lijiang optical telescope(LJT)and the 1.6-meter Multi-channel Photometric Survey Telescope(Mephisto).The Mephisto is under construction.The ASMS has been running on robotic mode since 2017.The core instruments:Cloud Sensor,All-Sky Camera and AutonomousDIMM that are developed by our group,together with the commercial Meteorological Station and Sky Quality Meter,are combined into the astronomical optical site monitoring system.The new Cloud Sensor's Cloud-Clear Relationship is presented for the first time,which is used to calculate the All-Sky cloud cover.We designed the Autonomous-DIMM located on a tower,with the same height as LJT.The seeing data have been observed for a full year.ASMS's data for the year 2019 are also analysed in detail,which are valuable to observers.展开更多
We report a detailed investigation of the bulk motions of the nearby Galactic stellar disk, based on three samples selected from the LSS-GAC DR2: a global sample containing 0.57 million FGK dwarfs out to ~2 kpc, a l...We report a detailed investigation of the bulk motions of the nearby Galactic stellar disk, based on three samples selected from the LSS-GAC DR2: a global sample containing 0.57 million FGK dwarfs out to ~2 kpc, a local subset of the global sample consisting of ~5400 stars within 150 pc, and an anti-center sample containing ~4400AFGK dwarfs and red clump stars within windows a few degrees wide centered on the Galactic Anti-center. The global sample is used to construct a three-dimensional map of bulk motions of the Galactic disk from the solar vicinity out to ~2 kpc with a spatial resolution of ~250 pc. Typical values of the radial and vertical components of bulk motion range from-15 km s-1to 15 km s-1; in contrast, the lag behind the circular motion dominates the azimuthal component by up to ~15 km s-1. The map reveals spatially coherent, kpc-scale stellar flows in the disk, with typical velocities of a few tens of km s-1. Bending- and breathing-mode perturbations are clearly visible,and vary smoothly across the disk plane. Our data also reveal higher-order perturbations, such as breaks and ripples, in the profiles of vertical motion versus height. From the local sample, we find that stars from different populations exhibit very different patterns of bulk motion. Finally, the anti-center sample reveals a number of peaks in stellar number density in the line-of-sight velocity versus distance distribution, with the nearer ones apparently related to the known moving groups. The "velocity bifurcation" reported by Liu et al. at Galactocentric radii 10–11 kpc is confirmed. However,just beyond this distance, our data also reveal a new triple-peaked structure.展开更多
Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk...Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anticenter(LSS-GAC) to determine the radial and vertical gradients of stellar metallicity,△[Fe/H]/△R and △[Fe/H]/△|Z | of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages( 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages( 11 Gyr)are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R.After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum(steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are significant radial flows of gas in the dis展开更多
Using a sample of over 70 000 red clump(RC) stars with 5%–10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center(LSS-GAC), we study the radial and vertical gradients of th...Using a sample of over 70 000 red clump(RC) stars with 5%–10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center(LSS-GAC), we study the radial and vertical gradients of the Galactic disk(s) mainly in the anti-center direction, covering a significant volume of the disk in the range of projected Galactocentric radius 7 ≤ RGC ≤ 14 kpc and height from the Galactic midplane 0 ≤ |Z | ≤ 3 kpc. Our analysis shows that both the radial and vertical metallicity gradients are negative across much of the volume of the disk that is probed, and they exhibit significant spatial variations. Near the solar circle(7 ≤ RGC ≤ 11.5 kpc), the radial gradient has a moderately steep, negative slope of-0.08 dex kpc-1near the midplane(|Z | 〈 0.1 kpc), and the slope flattens with increasing |Z |. In the outer disk(11.5 〈 RGC ≤ 14 kpc), the radial gradients have an essentially constant, much less steep slope of-0.01 dex kpc-1at all heights above the plane, suggesting that the outer disk may have experienced an evolutionary path different from that of the inner disk. The vertical gradients are found to flatten largely with increasing RGC. However, the vertical gradient of the lower disk(0 ≤ |Z | ≤ 1 kpc)is found to flatten with RGC quicker than that of the upper disk(1 〈 |Z | ≤ 3 kpc).Our results should provide strong constraints on the theory of disk formation and evolution, as well as the underlying physical processes that shape the disk(e.g. gas flows,radial migration, and internal and external perturbations).展开更多
Asteroseismology allows for deriving precise values of the surface gravity of stars. The accurate asteroseismic determinations now available for the large number of stars in the Kepler fields can be used to check and ...Asteroseismology allows for deriving precise values of the surface gravity of stars. The accurate asteroseismic determinations now available for the large number of stars in the Kepler fields can be used to check and calibrate surface gravities that are currently being obtained spectroscopically for a huge number of stars targeted by large-scale spectroscopic surveys, such as the on-going Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Galactic survey. The LAMOST spectral surveys have obtained a large number of stellar spectra in the Kepler fields. Stellar atmospheric parameters of those stars have been determined with the LAMOST Stellar Parameter Pipeline at Peking University (LSP3), by template matching with the MILES empirical spectral library. In the current work, we compare surface gravities yielded by LSP3 with those of two asteroseismic samples-- the largest Kepler asteroseismic sample and the most accurate Kepler asteroseismic sample. We find that LSP3 surface gravities are in good agreement with asteroseismic values of Hekker et al., with a dispersion of -0.2 dex. Except for a few cases, asteroseismic surface gravities ofHuber et al. and LSP3 spectroscopic values agree for a wide range of surface gravities. However, some patterns in the differences can be identified upon close inspection. Potential ways to further improve the LSP3 spectroscopic estimation of stellar atmospheric parameters in the near future are briefly discussed. The effects of effective temperature and metallicity on asteroseismic determinations of surface gravities for giant stars are also discussed.展开更多
We have investigated the feasibilities and accuracies of the identifications of RR Lyrae stars and quasars from the simulated data of the Multi-channel Photometric Survey Telescope(Mephisto)W Survey.Based on the varia...We have investigated the feasibilities and accuracies of the identifications of RR Lyrae stars and quasars from the simulated data of the Multi-channel Photometric Survey Telescope(Mephisto)W Survey.Based on the variable sources light curve libraries from the Sloan Digital Sky Survey(SDSS)Stripe 82 data and the observation history simulation from the Mephisto-W Survey Scheduler,we have simulated the uvgriz multi-band light curves of RR Lyrae stars,quasars and other variable sources for the first year observation of Mephisto W Survey.We have applied the ensemble machine learning algorithm Random Forest Classifier(RFC)to identify RR Lyrae stars and quasars,respectively.We build training and test samples and extract~150 features from the simulated light curves and train two RFCs respectively for the RR Lyrae star and quasar classification.We find that,our RFCs are able to select the RR Lyrae stars and quasars with remarkably high precision and completeness,with purity=95.4%and completeness=96.9%for the RR Lyrae RFC and purity=91.4%and completeness=90.2%for the quasar RFC.We have also derived relative importances of the extracted features utilized to classify RR Lyrae stars and quasars.展开更多
We present extensive spectroscopic observations of supernova remnant (SNR) S 147 collected with the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST). The spectra were care- fully sky-subtracted t...We present extensive spectroscopic observations of supernova remnant (SNR) S 147 collected with the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST). The spectra were care- fully sky-subtracted taking into account the complex filamentary structure of S 147. We have utilized all available LAMOST spectra toward S 147, including sky and stellar spectra. By measuring the prominent optical emission lines including Ha, [NII] )λ 6584 and [S n] λλ6717, 6731, we present maps of radial velocity and line intensity ratio covering the whole nebula of S 147 with unprecedented detail. The maps spatially correlate well with the complex filamentary structure of S147. For the central 2° of S147, the radial velocity varies from - 100 to 100 krn s^-1 and has peaks between - 0 and 10 km s^-1. The intensity ratios of Hα/[S n)λλ6717,6731, [Sn] λ 6717/λ 6731 and Ha/IN Hα/λ 6584 peak at about 0.77, 1.35 and 1.48, respectively, with a scatter of 0.17, 0.19 and 0.37, respectively. The intensity ratios are consistent with the literature values. However, the range of variations of line intensity ratios estimated here, which are representative of the whole nebula, is larger than previously estimated.展开更多
We present a catalog of 908 objects observed with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) in fields in the vicinity of M31 and M33, targeted as globular clusters(GCs) and candidates. ...We present a catalog of 908 objects observed with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) in fields in the vicinity of M31 and M33, targeted as globular clusters(GCs) and candidates. The targets include known GCs and candidates selected from the literature, as well as new candidates selected from the Sloan Digital Sky Survey(SDSS). Analysis shows that 356 of them are likely GCs with various confidence levels, while the remaining ones turn out to be background galaxies and quasars, stars and H II regions in M31 or foreground Galactic stars. The 356 likely GCs include 298 bona fide GCs and 26 candidates known in the literature. Three candidates, selected from the Revised Bologna Catalog of M31 GCs and candidates(RBC) and one possible cluster from Johnson et al., are confirmed to be bona fide clusters. We search for new GCs in the halo of the M31 among the new candidates selected from the SDSS photometry. Based on radial velocities yielded by LAMOST spectra and visual examination of the SDSS images, we find 28 objects, 5bona fide and 23 likely GCs. Among the five bona fide GCs, three have been recently discovered independently by others, and the remaining 25 are our new identifications,including two bona fide ones. The newly identified objects fall at projected distances ranging from 13 to 265 kpc from M31. Of the two newly discovered bona fide GCs,one is located near M33, probably a GC belonging to M33. The other bona fide GC falls on the Giant Stream with a projected distance of 78 kpc from M31. Of the 23 newly identified likely GCs, one has a projected distance of about 265 kpc from M31 and could be an intergalactic cluster.展开更多
In the fourth paper of this series,we present the metallicity-dependent Sloan Digital Sky Survey(SDSS)stellar color loci of red giant stars,using a spectroscopic sample of red giants in the SDSS Stripe82 region.The st...In the fourth paper of this series,we present the metallicity-dependent Sloan Digital Sky Survey(SDSS)stellar color loci of red giant stars,using a spectroscopic sample of red giants in the SDSS Stripe82 region.The stars span a range of 0.55-1.2 mag in color g-i,-0.3--2.5 in metallicity[Fe/H],and have values of surface gravity log g smaller than 3.5 dex.As in the case of main-sequence(MS)stars,the intrinsic widths of loci of red giants are also found to be quite narrow,a few mmag at maximum.There are however systematic differences between the metallicity-dependent stellar loci of red giants and MS stars.The colors of red giants are less sensitive to metallicity than those of MS stars.With good photometry,photometric metallicities of red giants can be reliably determined by fitting the u-g,g-r,r-i,and i-z colors simultaneously to an accuracy of 0.2-0.25 dex,comparable to the precision achievable with low-resolution spectroscopy for a signal-to-noise ratio of 10.By comparing fitting results to the stellar loci of red giants and MS stars,we propose a new technique to discriminate between red giants and MS stars based on the SDSS photometry.The technique achieves completeness of~70 per cent and efficiency of~80 per cent in selecting metal-poor red giant stars of[Fe/H]≤-1.2.It thus provides an important tool to probe the structure and assemblage history of the Galactic halo using red giant stars.展开更多
A systematic study of RR Lyrae stars is performed using a selected sample of 655 objects in the Large Magellanic Cloud (LMC) with long-term observations and numerous measurements from the Optical Gravitational Lensi...A systematic study of RR Lyrae stars is performed using a selected sample of 655 objects in the Large Magellanic Cloud (LMC) with long-term observations and numerous measurements from the Optical Gravitational Lensing Experiment III project. The phase dispersion method and linear superposition of the harmonic oscillations are used to derive the pulsation frequency and properties of light variation. It is found that a dichotomy exists in Oosterhoff Type I and Oosterhoff Type II for RR Lyrae stars in the LMC. Due to our strict criteria for identifying a frequency, a lower limit for the incidence rate of Blazhko modulation in the LMC is estimated in various subclasses of RR Lyrae stars. For fundamental-mode RR Lyrae stars, the rate of 7.5% is smaller than the previous result. In the case of the first-overtone RR Lyrae variables, the rate of 9.1% is relatively high. In addition to the Blazhko variables, 15 objects are identified to pulsate in the fundamental/first-overtone double mode. Furthermore, four objects show a period ratio around 0.6, which makes them very likely to be rare pulsators in the fundamental/second-overtone double mode.展开更多
Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of...Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multiepoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions,are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with Teff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.展开更多
The stellar halo is one of the major components in the Milky Way. Research on its age can provide critical constraints on the origin of the stellar halo and further on the formation of our Galaxy.So far, different app...The stellar halo is one of the major components in the Milky Way. Research on its age can provide critical constraints on the origin of the stellar halo and further on the formation of our Galaxy.So far, different approaches and samples have been used to estimate the age of the Galactic halo. In our previous paper, we carefully selected 63 field halo turn-off stars within 1 kpc from the literature using a kinematic approach, then estimated the age of the halo. In this following work, we not only update the data from LAMOST DR4 and Gaia DR1, but also try a different method to select a clean halo sample by combining the metallicity and orbital parameters. Then we compare this halo turn-off sample with the GARSTEC model in the B-V vs. metallicity plane. After Monte Carlo simulations are performed, the age is estimated to be 10.5±1.4 Gyr, highly consistent with our previous result and other studies. However,due to the limited common sources between LAMOST DR4 and Gaia DR1, the final sample in this paper is still quite small. The estimated age will be more robust with the much larger Gaia DR2.展开更多
We present a catalogue of 3305 Hα emission-line point sources observed with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) in the vicinity fields of M31 and M33 during September 2011 and Januar...We present a catalogue of 3305 Hα emission-line point sources observed with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) in the vicinity fields of M31 and M33 during September 2011 and January 2016.The catalogue contains 1487 emission-line stars,532 emission-line nebulae including 377 likely planetary nebulae(PNe),83 H Ⅱ region candidates and 20 possible supernova remnants(SNRs) and 1286 unknown objects.Among them,24 PN candidates,19 H Ⅱ region candidates,10 SNR candidates and one symbiotic star candidate are new discoveries.Radial velocities and fluxes estimated from the Hα line and those quantities of seven other major emission lines including Hβ,[O Ⅲ] A4959,[O Ⅲ] A5007,[N Ⅱ] A6548,[N Ⅱ] A6583,[S Ⅱ] A6717 and [S Ⅱ] A6731 lines of all the catalogued sources yielded from the LAMOST spectra are also presented in our catalogue.Our catalogue is an ideal starting point to study the chemistry properties and kinematics of M 31 and M 33.展开更多
The Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center(XSTPS-GAC)is a photometric sky survey that covers nearly 6000 deg^2 towards the Galactic Anti-center(GAC) in the g,r,i bands. Half of its s...The Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center(XSTPS-GAC)is a photometric sky survey that covers nearly 6000 deg^2 towards the Galactic Anti-center(GAC) in the g,r,i bands. Half of its survey field is located on the Galactic Anti-center disk,which makes XSTPSGAC highly suitable to search for new open clusters in the GAC region. In this paper,we report new open cluster candidates discovered in this survey,as well as properties of these open cluster candidates,such as age,distance and reddening,derived by isochrone fitting in the color-magnitude diagram(CMD).These open cluster candidates are stellar density peaks detected in the star density maps by applying the method from Koposov et al. Each candidate is inspected in terms of its true color image composed from three XSTPS-GAC band images. Then its CMD is checked,in order to identify whether the central region stars have a clear isochrone-like trend differing from background stars. The parameters derived from isochrone fitting for these candidates are mainly based on three band photometry of XSTPS-GAC.Moreover,when these new candidates are able to be seen clearly in 2 MASS data,their parameters are also derived based on the 2 MASS(J-H,J) CMD. There are a total of 320 known open clusters rediscovered and 24 new open cluster candidates discovered in this work. Furthermore,the parameters of these new candidates,as well as another 11 previously known open clusters,are properly determined for the first time.展开更多
基金the National Natural Science Foundation of China(NSFC,Grant Nos.11991051,11203073,11573067,11873092 and 11803087)the CAS“Light of West China”Program(No.Y8XB018001)。
文摘We installed two sets of Astronomical Site Monitoring Systems(ASMSs)at Lijiang Observatory(GMG),for the running of the 2.4-meter Lijiang optical telescope(LJT)and the 1.6-meter Multi-channel Photometric Survey Telescope(Mephisto).The Mephisto is under construction.The ASMS has been running on robotic mode since 2017.The core instruments:Cloud Sensor,All-Sky Camera and AutonomousDIMM that are developed by our group,together with the commercial Meteorological Station and Sky Quality Meter,are combined into the astronomical optical site monitoring system.The new Cloud Sensor's Cloud-Clear Relationship is presented for the first time,which is used to calculate the All-Sky cloud cover.We designed the Autonomous-DIMM located on a tower,with the same height as LJT.The seeing data have been observed for a full year.ASMS's data for the year 2019 are also analysed in detail,which are valuable to observers.
基金supported by the National Key Basic Research Program of China (2014CB845700)
文摘We report a detailed investigation of the bulk motions of the nearby Galactic stellar disk, based on three samples selected from the LSS-GAC DR2: a global sample containing 0.57 million FGK dwarfs out to ~2 kpc, a local subset of the global sample consisting of ~5400 stars within 150 pc, and an anti-center sample containing ~4400AFGK dwarfs and red clump stars within windows a few degrees wide centered on the Galactic Anti-center. The global sample is used to construct a three-dimensional map of bulk motions of the Galactic disk from the solar vicinity out to ~2 kpc with a spatial resolution of ~250 pc. Typical values of the radial and vertical components of bulk motion range from-15 km s-1to 15 km s-1; in contrast, the lag behind the circular motion dominates the azimuthal component by up to ~15 km s-1. The map reveals spatially coherent, kpc-scale stellar flows in the disk, with typical velocities of a few tens of km s-1. Bending- and breathing-mode perturbations are clearly visible,and vary smoothly across the disk plane. Our data also reveal higher-order perturbations, such as breaks and ripples, in the profiles of vertical motion versus height. From the local sample, we find that stars from different populations exhibit very different patterns of bulk motion. Finally, the anti-center sample reveals a number of peaks in stellar number density in the line-of-sight velocity versus distance distribution, with the nearer ones apparently related to the known moving groups. The "velocity bifurcation" reported by Liu et al. at Galactocentric radii 10–11 kpc is confirmed. However,just beyond this distance, our data also reveal a new triple-peaked structure.
基金supported by the National Key Basic Research Program of China (2014CB845700)supported by the National Natural Science Foundation of China (Grant No.11473001)B.Q.C acknowledges partial funding from the China Postdoctoral Science Foundation (2014M560843)
文摘Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anticenter(LSS-GAC) to determine the radial and vertical gradients of stellar metallicity,△[Fe/H]/△R and △[Fe/H]/△|Z | of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages( 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages( 11 Gyr)are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R.After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum(steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are significant radial flows of gas in the dis
基金supported by the National Key Basic Research Program of China (2014CB845700)the National Natural Science Foundation of China (Grant No. 11473001)
文摘Using a sample of over 70 000 red clump(RC) stars with 5%–10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center(LSS-GAC), we study the radial and vertical gradients of the Galactic disk(s) mainly in the anti-center direction, covering a significant volume of the disk in the range of projected Galactocentric radius 7 ≤ RGC ≤ 14 kpc and height from the Galactic midplane 0 ≤ |Z | ≤ 3 kpc. Our analysis shows that both the radial and vertical metallicity gradients are negative across much of the volume of the disk that is probed, and they exhibit significant spatial variations. Near the solar circle(7 ≤ RGC ≤ 11.5 kpc), the radial gradient has a moderately steep, negative slope of-0.08 dex kpc-1near the midplane(|Z | 〈 0.1 kpc), and the slope flattens with increasing |Z |. In the outer disk(11.5 〈 RGC ≤ 14 kpc), the radial gradients have an essentially constant, much less steep slope of-0.01 dex kpc-1at all heights above the plane, suggesting that the outer disk may have experienced an evolutionary path different from that of the inner disk. The vertical gradients are found to flatten largely with increasing RGC. However, the vertical gradient of the lower disk(0 ≤ |Z | ≤ 1 kpc)is found to flatten with RGC quicker than that of the upper disk(1 〈 |Z | ≤ 3 kpc).Our results should provide strong constraints on the theory of disk formation and evolution, as well as the underlying physical processes that shape the disk(e.g. gas flows,radial migration, and internal and external perturbations).
基金supported by the National Key Basic Research Program of China(2014CB84570)the European Research Council under the European Community’s Seventh Framework Programme(FP7/20072013)/ERC grant agreement(No 338251,Stellar Ages)+1 种基金The Guo Shou Jing Telescope(the Large Sky Area Multi-Object Fiber Spectroscopic Telescope,LAMOST)is a National Major Scientific Project built by the Chinese Academy of SciencesFunding for the project has been provided by the National Development and Reform Commission
文摘Asteroseismology allows for deriving precise values of the surface gravity of stars. The accurate asteroseismic determinations now available for the large number of stars in the Kepler fields can be used to check and calibrate surface gravities that are currently being obtained spectroscopically for a huge number of stars targeted by large-scale spectroscopic surveys, such as the on-going Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Galactic survey. The LAMOST spectral surveys have obtained a large number of stellar spectra in the Kepler fields. Stellar atmospheric parameters of those stars have been determined with the LAMOST Stellar Parameter Pipeline at Peking University (LSP3), by template matching with the MILES empirical spectral library. In the current work, we compare surface gravities yielded by LSP3 with those of two asteroseismic samples-- the largest Kepler asteroseismic sample and the most accurate Kepler asteroseismic sample. We find that LSP3 surface gravities are in good agreement with asteroseismic values of Hekker et al., with a dispersion of -0.2 dex. Except for a few cases, asteroseismic surface gravities ofHuber et al. and LSP3 spectroscopic values agree for a wide range of surface gravities. However, some patterns in the differences can be identified upon close inspection. Potential ways to further improve the LSP3 spectroscopic estimation of stellar atmospheric parameters in the near future are briefly discussed. The effects of effective temperature and metallicity on asteroseismic determinations of surface gravities for giant stars are also discussed.
基金funded by the National Natural Science Foundation of China(NSFC)Nos.11803029,11833006 and 12173034the National Training Program of Innovation and Entrepreneurship for Undergraduates of China No.201910673001,Yunnan University grant C176220100007+8 种基金the National Key R&D Program of China No.2019YFA0405500the science research grants from the China Manned Space Project with Nos.CMS-CSST-2021-A09,CMS-CSST-2021-A08 and CMS-CSST2021-B03Funding for SDSS-Ⅲhas been provided by the Alfred P.Sloan Foundation,the Participating Institutions,the National Science Foundation,and the U.S.Department of Energy Office of ScienceThe national facility capability for Sky Mapper has been funded through ARC LIEF grant LE130100104 from the Australian Research CouncilDevelopment and support of the Sky Mapper node of the ASVO has been funded in part by Astronomy Australia Limited(AAL)the Australian Government through the Commonwealth’s Education Investment Fund(EIF)National Collaborative Research Infrastructure Strategy(NCRIS)the National e Research Collaboration Tools and Resources(Ne CTAR)the Australian National Data Service Projects(ANDS)。
文摘We have investigated the feasibilities and accuracies of the identifications of RR Lyrae stars and quasars from the simulated data of the Multi-channel Photometric Survey Telescope(Mephisto)W Survey.Based on the variable sources light curve libraries from the Sloan Digital Sky Survey(SDSS)Stripe 82 data and the observation history simulation from the Mephisto-W Survey Scheduler,we have simulated the uvgriz multi-band light curves of RR Lyrae stars,quasars and other variable sources for the first year observation of Mephisto W Survey.We have applied the ensemble machine learning algorithm Random Forest Classifier(RFC)to identify RR Lyrae stars and quasars,respectively.We build training and test samples and extract~150 features from the simulated light curves and train two RFCs respectively for the RR Lyrae star and quasar classification.We find that,our RFCs are able to select the RR Lyrae stars and quasars with remarkably high precision and completeness,with purity=95.4%and completeness=96.9%for the RR Lyrae RFC and purity=91.4%and completeness=90.2%for the quasar RFC.We have also derived relative importances of the extracted features utilized to classify RR Lyrae stars and quasars.
基金supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1531244)the National Key Basic Research Program of China (2014CB845700)+4 种基金support from the Young Researcher Grant of National Astronomical Observatories, Chinese Academy of Sciencessupported by Special Funding for Advanced Users, budgeted and administrated by the Center for Astronomical MegaScience, Chinese Academy of Sciences (CAMS)National Major Scientific Project built by the Chinese Academy of SciencesFunding for the project has been provided by the National Development and Reform CommissionNational Astronomical Observatories, Chinese Academy of Sciences
文摘We present extensive spectroscopic observations of supernova remnant (SNR) S 147 collected with the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST). The spectra were care- fully sky-subtracted taking into account the complex filamentary structure of S 147. We have utilized all available LAMOST spectra toward S 147, including sky and stellar spectra. By measuring the prominent optical emission lines including Ha, [NII] )λ 6584 and [S n] λλ6717, 6731, we present maps of radial velocity and line intensity ratio covering the whole nebula of S 147 with unprecedented detail. The maps spatially correlate well with the complex filamentary structure of S147. For the central 2° of S147, the radial velocity varies from - 100 to 100 krn s^-1 and has peaks between - 0 and 10 km s^-1. The intensity ratios of Hα/[S n)λλ6717,6731, [Sn] λ 6717/λ 6731 and Ha/IN Hα/λ 6584 peak at about 0.77, 1.35 and 1.48, respectively, with a scatter of 0.17, 0.19 and 0.37, respectively. The intensity ratios are consistent with the literature values. However, the range of variations of line intensity ratios estimated here, which are representative of the whole nebula, is larger than previously estimated.
基金supported by the National Basic Research Program of China (973 Program, 2014CB845700)the China Postdoctoral Science Foundation (2014M560843)
文摘We present a catalog of 908 objects observed with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) in fields in the vicinity of M31 and M33, targeted as globular clusters(GCs) and candidates. The targets include known GCs and candidates selected from the literature, as well as new candidates selected from the Sloan Digital Sky Survey(SDSS). Analysis shows that 356 of them are likely GCs with various confidence levels, while the remaining ones turn out to be background galaxies and quasars, stars and H II regions in M31 or foreground Galactic stars. The 356 likely GCs include 298 bona fide GCs and 26 candidates known in the literature. Three candidates, selected from the Revised Bologna Catalog of M31 GCs and candidates(RBC) and one possible cluster from Johnson et al., are confirmed to be bona fide clusters. We search for new GCs in the halo of the M31 among the new candidates selected from the SDSS photometry. Based on radial velocities yielded by LAMOST spectra and visual examination of the SDSS images, we find 28 objects, 5bona fide and 23 likely GCs. Among the five bona fide GCs, three have been recently discovered independently by others, and the remaining 25 are our new identifications,including two bona fide ones. The newly identified objects fall at projected distances ranging from 13 to 265 kpc from M31. Of the two newly discovered bona fide GCs,one is located near M33, probably a GC belonging to M33. The other bona fide GC falls on the Giant Stream with a projected distance of 78 kpc from M31. Of the 23 newly identified likely GCs, one has a projected distance of about 265 kpc from M31 and could be an intergalactic cluster.
基金the National Natural Science Foundation of China(Nos.12173007,11603002)the National Key Basic R&D Program of China(2019YFA0405503)+5 种基金Beijing Normal University(No.310232102)the science research grants from the China Manned Space Project with No.CMS-CSST-2021-A08 and CMS-CSST2021-A09Funding for SDSS-III has been provided by the Alfred P.Sloan Foundationthe Participating Institutionsthe National Science Foundationthe U.S.Department of Energy Office of Science。
文摘In the fourth paper of this series,we present the metallicity-dependent Sloan Digital Sky Survey(SDSS)stellar color loci of red giant stars,using a spectroscopic sample of red giants in the SDSS Stripe82 region.The stars span a range of 0.55-1.2 mag in color g-i,-0.3--2.5 in metallicity[Fe/H],and have values of surface gravity log g smaller than 3.5 dex.As in the case of main-sequence(MS)stars,the intrinsic widths of loci of red giants are also found to be quite narrow,a few mmag at maximum.There are however systematic differences between the metallicity-dependent stellar loci of red giants and MS stars.The colors of red giants are less sensitive to metallicity than those of MS stars.With good photometry,photometric metallicities of red giants can be reliably determined by fitting the u-g,g-r,r-i,and i-z colors simultaneously to an accuracy of 0.2-0.25 dex,comparable to the precision achievable with low-resolution spectroscopy for a signal-to-noise ratio of 10.By comparing fitting results to the stellar loci of red giants and MS stars,we propose a new technique to discriminate between red giants and MS stars based on the SDSS photometry.The technique achieves completeness of~70 per cent and efficiency of~80 per cent in selecting metal-poor red giant stars of[Fe/H]≤-1.2.It thus provides an important tool to probe the structure and assemblage history of the Galactic halo using red giant stars.
基金supported by the National Natural Science Foundation of China (Grant No. 10973004)
文摘A systematic study of RR Lyrae stars is performed using a selected sample of 655 objects in the Large Magellanic Cloud (LMC) with long-term observations and numerous measurements from the Optical Gravitational Lensing Experiment III project. The phase dispersion method and linear superposition of the harmonic oscillations are used to derive the pulsation frequency and properties of light variation. It is found that a dichotomy exists in Oosterhoff Type I and Oosterhoff Type II for RR Lyrae stars in the LMC. Due to our strict criteria for identifying a frequency, a lower limit for the incidence rate of Blazhko modulation in the LMC is estimated in various subclasses of RR Lyrae stars. For fundamental-mode RR Lyrae stars, the rate of 7.5% is smaller than the previous result. In the case of the first-overtone RR Lyrae variables, the rate of 9.1% is relatively high. In addition to the Blazhko variables, 15 objects are identified to pulsate in the fundamental/first-overtone double mode. Furthermore, four objects show a period ratio around 0.6, which makes them very likely to be rare pulsators in the fundamental/second-overtone double mode.
基金partially supported by the National Key Basic Research Program of China(2014CB845700)China Postdoctoral Science Foundation(2016M600850)+1 种基金the National Natural Science Foundation of China(No.11443006)Joint Research Fund in Astronomy(Nos.U1531244 and U1631236)
文摘Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multiepoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions,are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with Teff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11473001 and 11078006)support by the National Key Basic Research Program of China (Grant No. 2014CB845700)+2 种基金supported by the China Postdoctoral Science Foundation (Grant No. 2017M610695)supported by Special Funding for Advanced Users,budgeted and administrated by the Center for Astronomical Mega-Science, Chinese Academy of Sciencesa National Major Scientific Project which is built by the Chinese Academy of Sciences,funded by the National Development and Reform Commission, and operated and managed by the National Astronomical Observatories, Chinese Academy of Sciences
文摘The stellar halo is one of the major components in the Milky Way. Research on its age can provide critical constraints on the origin of the stellar halo and further on the formation of our Galaxy.So far, different approaches and samples have been used to estimate the age of the Galactic halo. In our previous paper, we carefully selected 63 field halo turn-off stars within 1 kpc from the literature using a kinematic approach, then estimated the age of the halo. In this following work, we not only update the data from LAMOST DR4 and Gaia DR1, but also try a different method to select a clean halo sample by combining the metallicity and orbital parameters. Then we compare this halo turn-off sample with the GARSTEC model in the B-V vs. metallicity plane. After Monte Carlo simulations are performed, the age is estimated to be 10.5±1.4 Gyr, highly consistent with our previous result and other studies. However,due to the limited common sources between LAMOST DR4 and Gaia DR1, the final sample in this paper is still quite small. The estimated age will be more robust with the much larger Gaia DR2.
基金funded by the National Natural Science Foundation of China (NSFC, Grant Nos.11080922,11803029,11973001,U1531244, 11833006 and U1731308)the National Key R&D Program of China (No.2019YFA0405500)。
文摘We present a catalogue of 3305 Hα emission-line point sources observed with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) in the vicinity fields of M31 and M33 during September 2011 and January 2016.The catalogue contains 1487 emission-line stars,532 emission-line nebulae including 377 likely planetary nebulae(PNe),83 H Ⅱ region candidates and 20 possible supernova remnants(SNRs) and 1286 unknown objects.Among them,24 PN candidates,19 H Ⅱ region candidates,10 SNR candidates and one symbiotic star candidate are new discoveries.Radial velocities and fluxes estimated from the Hα line and those quantities of seven other major emission lines including Hβ,[O Ⅲ] A4959,[O Ⅲ] A5007,[N Ⅱ] A6548,[N Ⅱ] A6583,[S Ⅱ] A6717 and [S Ⅱ] A6731 lines of all the catalogued sources yielded from the LAMOST spectra are also presented in our catalogue.Our catalogue is an ideal starting point to study the chemistry properties and kinematics of M 31 and M 33.
基金supported by the National Natural Science Foundation of China (NSFC,Grant Nos.11473001,11233004,11078006,11633009 and 11273067)the Minor Planet Foundation of Purple Mountain Observatory+2 种基金supported by the National Key Basic Research Program of China (2014CB845700)the China Postdoctoral Science Foundation (Grant No.2017M610695)supported by Special Funding for Advanced Users,budgeted and administrated by the Center for Astronomical Mega-Science,Chinese Academy of Sciences
文摘The Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center(XSTPS-GAC)is a photometric sky survey that covers nearly 6000 deg^2 towards the Galactic Anti-center(GAC) in the g,r,i bands. Half of its survey field is located on the Galactic Anti-center disk,which makes XSTPSGAC highly suitable to search for new open clusters in the GAC region. In this paper,we report new open cluster candidates discovered in this survey,as well as properties of these open cluster candidates,such as age,distance and reddening,derived by isochrone fitting in the color-magnitude diagram(CMD).These open cluster candidates are stellar density peaks detected in the star density maps by applying the method from Koposov et al. Each candidate is inspected in terms of its true color image composed from three XSTPS-GAC band images. Then its CMD is checked,in order to identify whether the central region stars have a clear isochrone-like trend differing from background stars. The parameters derived from isochrone fitting for these candidates are mainly based on three band photometry of XSTPS-GAC.Moreover,when these new candidates are able to be seen clearly in 2 MASS data,their parameters are also derived based on the 2 MASS(J-H,J) CMD. There are a total of 320 known open clusters rediscovered and 24 new open cluster candidates discovered in this work. Furthermore,the parameters of these new candidates,as well as another 11 previously known open clusters,are properly determined for the first time.