A current based hybrid method (HM) is proposed which combines the method of moment (MOM) with the Kirchhoff approximation (KA) for the analysis of scattering interaction between a two-dimensional (2D) infinite...A current based hybrid method (HM) is proposed which combines the method of moment (MOM) with the Kirchhoff approximation (KA) for the analysis of scattering interaction between a two-dimensional (2D) infinitely long conducting target with arbitrary cross section and a one-dimensional (1D) Gaussian rough surface. The electromagnetic scattering region in the HM is split into KA region and MOM region. The electric field integral equation (EFIE) in MOM region (target) is derived, the computational time of the HM depends mainly on the number of unknowns of the target. The bistatic scattering coefficient for the infinitely long cylinder above the rough surface with Gaussian roughness spectrum is calculated, and the numerical results are compared and verified with those obtained by the conventional MOM, which shows the high efficiency of the HM. Finally, the influence of the size, location of the target, the rms height and correlation length of the rough surface on the bistatic scattering coefficient with different polarizations is discussed in detail.展开更多
The optical wave scattering from one-dimensional (1D) lossy dielectric Gaussian random rough surface is studied. The tapered incident wave is introduced into the classical Kirchhoff approximation (KA), and the sha...The optical wave scattering from one-dimensional (1D) lossy dielectric Gaussian random rough surface is studied. The tapered incident wave is introduced into the classical Kirchhoff approximation (KA), and the shadowing effect is also taken into account to make the KA results have a high accuracy. The definition of the bistatic scattering coefficient of the modified KA and the method of moment (MOM) are unified. The characteristics of the optical wave scattering from the lossy dielectric Gaussian random rough surface of different parameters are analyzed by implementing MOM.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60571058)the Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘A current based hybrid method (HM) is proposed which combines the method of moment (MOM) with the Kirchhoff approximation (KA) for the analysis of scattering interaction between a two-dimensional (2D) infinitely long conducting target with arbitrary cross section and a one-dimensional (1D) Gaussian rough surface. The electromagnetic scattering region in the HM is split into KA region and MOM region. The electric field integral equation (EFIE) in MOM region (target) is derived, the computational time of the HM depends mainly on the number of unknowns of the target. The bistatic scattering coefficient for the infinitely long cylinder above the rough surface with Gaussian roughness spectrum is calculated, and the numerical results are compared and verified with those obtained by the conventional MOM, which shows the high efficiency of the HM. Finally, the influence of the size, location of the target, the rms height and correlation length of the rough surface on the bistatic scattering coefficient with different polarizations is discussed in detail.
基金supported by the National Natural Science Foundation of China (No. 60571058)the Specialized Research Fund for the Doctoral Program of Higher Education, China (No. 20070701010)
文摘The optical wave scattering from one-dimensional (1D) lossy dielectric Gaussian random rough surface is studied. The tapered incident wave is introduced into the classical Kirchhoff approximation (KA), and the shadowing effect is also taken into account to make the KA results have a high accuracy. The definition of the bistatic scattering coefficient of the modified KA and the method of moment (MOM) are unified. The characteristics of the optical wave scattering from the lossy dielectric Gaussian random rough surface of different parameters are analyzed by implementing MOM.