期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
GMM-UBM和SVM说话人辨认系统及融合的分析 被引量:9
1
作者 郑方 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第S1期693-698,共6页
在说话人辨认任务中,Gauss混合模型-通用背景模型(Gaussian mixture model-universal backgroundmodel,GMM-UBM)采用帧向量进行建模和识别,突出了说话人个性特征,但受信道影响较大;支持向量机(support vector machine,SVM)利用帧向量在... 在说话人辨认任务中,Gauss混合模型-通用背景模型(Gaussian mixture model-universal backgroundmodel,GMM-UBM)采用帧向量进行建模和识别,突出了说话人个性特征,但受信道影响较大;支持向量机(support vector machine,SVM)利用帧向量在空间中分布的Gauss混合的均值进行建模和识别,对信道的鲁棒性较好,但对说话人的个性体现不够。该文分析了这2种说话人识别系统的优缺点,并采用融合方法来提高系统的性能。在美国国家标准与技术研究所(NIST)评测数据集的实验中,融合系统的等错误率从GMM-UBM系统的9.30%和SVM系统的8.26%降低到7.34%,分别相对降低了21.08%和11.14%。 展开更多
关键词 说话人辨认 Gauss混合模型-通用背景模型(GMM-UBM) 支持向量机(SVM) 信道鲁棒
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部