期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于透射率融合与多重导向滤波的单幅图像去雾 被引量:13
1
作者 杨爱萍 王海新 +2 位作者 王金斌 赵美琪 鲁立 《光学学报》 EI CAS CSCD 北大核心 2018年第12期104-114,共11页
为了避免图像去雾后细节模糊和噪声放大,将图像分解为结构层和纹理层,并只对其结构层进行去雾。基于频域滤波思想提出透射率融合方法,解决了现有透射率估计方法中普遍存在的块效应问题和复原图像中存在的晕轮伪影问题。针对透射率优化... 为了避免图像去雾后细节模糊和噪声放大,将图像分解为结构层和纹理层,并只对其结构层进行去雾。基于频域滤波思想提出透射率融合方法,解决了现有透射率估计方法中普遍存在的块效应问题和复原图像中存在的晕轮伪影问题。针对透射率优化过程中存在的计算量大、透射率平滑与细节保持之间难以平衡等问题,提出了多重导向滤波透射率优化方法。同时,针对目前大气光估计易受图像中白色物体的影响,提出自适应大气光估计方法。实验结果表明,该算法得到的图像去雾彻底、细节清晰、颜色自然,不仅有效抑制噪声和晕轮伪影,而且显著提高场景对比度、饱和度。 展开更多
关键词 图像处理 图像去雾 图像分解 透射率融合 多重导向滤波 自适应大气光估计
原文传递
基于低通滤波和多特征联合优化的夜间图像去雾 被引量:8
2
作者 杨爱萍 赵美琪 +1 位作者 王海新 鲁立 《光学学报》 EI CAS CSCD 北大核心 2018年第10期159-168,共10页
夜间有雾图像光照不均、对比度较低且色偏严重。现有的去雾算法主要是针对白天图像,并不适用于夜间场景,夜间图像去雾难度较大。该文通过深入分析夜间有雾图像的成像特点,提出了基于低通滤波和多特征联合优化的夜间图像去雾算法。针对... 夜间有雾图像光照不均、对比度较低且色偏严重。现有的去雾算法主要是针对白天图像,并不适用于夜间场景,夜间图像去雾难度较大。该文通过深入分析夜间有雾图像的成像特点,提出了基于低通滤波和多特征联合优化的夜间图像去雾算法。针对夜间图像环境光照不均匀问题,提出先对图像进行低通滤波,然后对其低频分量三通道利用最小-最大值滤波估计局部环境光;针对目前白天去雾算法先验不适用于夜间图像,提出结合图像对比度、饱和度和信息熵特征,构建多特征联合优化函数估计透射率;针对夜间图像存在非一致色偏问题,提出非重叠块局部Shade of Gray算法进行颜色校正。实验结果表明:所提算法去雾图像的主观视觉效果较好,且对比度和色偏程度两方面客观评价指标整体优于其他对比算法。该算法能够有效去除夜间图像雾气,提高图像的对比度,恢复更多的细节信息,且颜色自然,视觉效果理想。 展开更多
关键词 图像处理 夜间图像去雾 低通滤波 局部环境光 多特征联合优化
原文传递
多层特征图堆叠网络及其目标检测方法 被引量:5
3
作者 杨爱萍 鲁立 冀中 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2020年第6期647-652,共6页
随着深度卷积神经网络的快速发展,基于深度学习的目标检测方法由于具有良好的特征表达能力及优良的检测精度,成为当前目标检测算法的主流.为了解决目标检测中小目标漏检问题,往往使用多尺度处理方法.现有的多尺度目标检测方法可以分为... 随着深度卷积神经网络的快速发展,基于深度学习的目标检测方法由于具有良好的特征表达能力及优良的检测精度,成为当前目标检测算法的主流.为了解决目标检测中小目标漏检问题,往往使用多尺度处理方法.现有的多尺度目标检测方法可以分为基于图像金字塔的方法和基于特征金字塔的方法.相比于基于图像金字塔的方法,基于特征金字塔的方法速度更快,更能充分利用不同卷积层的特征信息.现有的基于特征金字塔的方法采用对应元素相加的方式融合不同尺度的特征图,在特征融合过程中易丢失低层细节特征信息.针对该问题,本文基于特征金字塔网络(featurepyramidnetwork,FPN),提出一种多层特征图堆叠网络(multi-featureconcatenationnetwork,MFCN)及其目标检测方法.该网络以FPN为基础,设计多层特征图堆叠结构,通过不同特征层之间的特征图堆叠融合高层语义特征和低层细节特征,并且在每个层上进行目标检测,保证每层可包含该层及其之上所有层的特征信息,可有效克服低层细节信息丢失.同时,为了能够充分利用ResNet101中的高层特征,在其后添加新的卷积层,并联合其低层特征图,提取多尺度特征.在PASCALVOC2007数据集上的检测精度为80.1%m AP,同时在PASCALVOC2012和MSCOCO数据集上的表现都优于FPN算法.相比于FPN算法,MFCN的检测性能更加优秀. 展开更多
关键词 特征金字塔网络 目标检测 特征图堆叠 语义信息
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部