在空对地场景下的目标检测领域中,传统的单阶段检测算法由于固定尺寸的输入,在对大分辨率图像检测时效果较差,尤其当图像中存在较多密集小目标时,漏检现象严重。因此,模仿人眼的目标搜索行为,提出了一种密集场景聚焦的双通道耦合目标检...在空对地场景下的目标检测领域中,传统的单阶段检测算法由于固定尺寸的输入,在对大分辨率图像检测时效果较差,尤其当图像中存在较多密集小目标时,漏检现象严重。因此,模仿人眼的目标搜索行为,提出了一种密集场景聚焦的双通道耦合目标检测算法。算法在You Only Look Once V3(Yolo V3)网络的基础上,增加了密集场景检测通道,对图像中的密集区域进行检测,建立场景耦合结构,将密集场景通道的特征信息与目标实例检测通道的信息进行融合,对检测难度较大的密集区域进行变分辨率检测,以提升对密集小目标的检测精度。在自制空对地密集场景数据集下验证,结果表明,该算法对密集小目标的检测有更好的效果,相比于传统的Yolo V3网络,在检测速度下降9.1帧/s的情况下,平均精度上提升了16.4%。展开更多
文摘在空对地场景下的目标检测领域中,传统的单阶段检测算法由于固定尺寸的输入,在对大分辨率图像检测时效果较差,尤其当图像中存在较多密集小目标时,漏检现象严重。因此,模仿人眼的目标搜索行为,提出了一种密集场景聚焦的双通道耦合目标检测算法。算法在You Only Look Once V3(Yolo V3)网络的基础上,增加了密集场景检测通道,对图像中的密集区域进行检测,建立场景耦合结构,将密集场景通道的特征信息与目标实例检测通道的信息进行融合,对检测难度较大的密集区域进行变分辨率检测,以提升对密集小目标的检测精度。在自制空对地密集场景数据集下验证,结果表明,该算法对密集小目标的检测有更好的效果,相比于传统的Yolo V3网络,在检测速度下降9.1帧/s的情况下,平均精度上提升了16.4%。