期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于低秩分解的联合动态稀疏表示多观测样本分类算法 被引量:3
1
作者 胡正平 高红 赵淑欢 《电子学报》 EI CAS CSCD 北大核心 2015年第3期440-446,共7页
通过互联网易获得同一对象的多个无约束的观测样本,针对如何解决无约束观测样本带来的识别困难及充分利用多观测样本数据信息提高其分类性能问题,提出基于低秩分解的联合动态稀疏表示多观测样本分类算法.该算法首先寻找到一组最佳的图... 通过互联网易获得同一对象的多个无约束的观测样本,针对如何解决无约束观测样本带来的识别困难及充分利用多观测样本数据信息提高其分类性能问题,提出基于低秩分解的联合动态稀疏表示多观测样本分类算法.该算法首先寻找到一组最佳的图像变换域,使得变换图像可以分解成一个低秩矩阵和一个相关的稀疏误差矩阵;然后对低秩矩阵和稀疏误差矩阵分别进行联合动态稀疏表示,以便充分利用类级的相关性和原子级的差异性,即使多观测样本的稀疏表示向量在类级别上分享相同的稀疏模型,而在原子级上采用不同的稀疏模型;最后利用总的稀疏重建误差进行类别判决.在CMU-PIE人脸数据库、ETH-80物体识别数据库、USPS手写体数字数据库和UMIST人脸数据库上进行对比实验,实验结果表明本方法的优越性. 展开更多
关键词 模式识别 多观测样本分类 低秩矩阵恢复 联合动态稀疏表示
下载PDF
L1 Graph联合转换学习模型的多观测样本分类算法
2
作者 卢辉斌 胡正平 高红 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第11期2634-2640,共7页
不同分布多观测样本分类问题中,训练样本和测试样本来自不同的域,针对如何利用转换学习提高不同分布多观测样本分类性能问题,提出L1-Graph联合转换学习的多观测样本分类算法。首先基于转换学习构建一种非负矩阵三因子分解框架,将其中不... 不同分布多观测样本分类问题中,训练样本和测试样本来自不同的域,针对如何利用转换学习提高不同分布多观测样本分类性能问题,提出L1-Graph联合转换学习的多观测样本分类算法。首先基于转换学习构建一种非负矩阵三因子分解框架,将其中不变信息作为源域到目标域的转换桥梁;其次,基于稀疏表示思路构造L1-Graph,自适应寻找数据近邻,保留样本及特征几何结构;最后,将两个互补目标函数联合到统一优化问题中,然后利用迭代算法解决优化问题,进而估计出测试样本类别。在USPS-Binary数字数据库、Three-Domain Object Benchmark数据库和ALOI数据库上进行对比实验,实验结果表明该方法的有效性,既提高了识别精度又保证了算法鲁棒性。 展开更多
关键词 稀疏表示 转换学习 域适应 多观测样本分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部