The research of rogue waves is an advanced field which has important practical and theoretical significances in mathematics,physics,biological fluid mechanics,oceanography,etc.Using the reductive perturbation theory a...The research of rogue waves is an advanced field which has important practical and theoretical significances in mathematics,physics,biological fluid mechanics,oceanography,etc.Using the reductive perturbation theory and long wave approximation,the equations governing the movement of blood vessel walls and the flow of blood are transformed into high-order nonlinear Schrodinger(NLS)equations with variable coefficients.The third-order nonlinear Schrodinger equation is degenerated into a completely integrable Sasa–Satsuma equation(SSE)whose solutions can be used to approximately simulate the real rogue waves in the vessels.For the first time,we discuss the conditions for generating rogue waves in the blood vessels and effects of some physiological parameters on the rogue waves.Based on the traveling wave solutions of the fourth-order nonlinear Schrodinger equation,we analyze the effects of the higher order terms and the initial deformations of the blood vessel on the wave propagation and the displacement of the tube wall.Our results reveal that the amplitude of the rogue waves are proportional to the initial stretching ratio of the tube.The high-order nonlinear and dispersion terms lead to the distortion of the wave,while the initial deformation of the tube wall will influence the wave amplitude and wave steepness.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11975143)Nature Science Foundation of Shandong Province of China(Grant No.ZR2018MA017)+1 种基金the Taishan Scholars Program of Shandong Province,China(Grant No.ts20190936)the Shandong University of Science and Technology Research Fund(Grant No.2015TDJH102).
文摘The research of rogue waves is an advanced field which has important practical and theoretical significances in mathematics,physics,biological fluid mechanics,oceanography,etc.Using the reductive perturbation theory and long wave approximation,the equations governing the movement of blood vessel walls and the flow of blood are transformed into high-order nonlinear Schrodinger(NLS)equations with variable coefficients.The third-order nonlinear Schrodinger equation is degenerated into a completely integrable Sasa–Satsuma equation(SSE)whose solutions can be used to approximately simulate the real rogue waves in the vessels.For the first time,we discuss the conditions for generating rogue waves in the blood vessels and effects of some physiological parameters on the rogue waves.Based on the traveling wave solutions of the fourth-order nonlinear Schrodinger equation,we analyze the effects of the higher order terms and the initial deformations of the blood vessel on the wave propagation and the displacement of the tube wall.Our results reveal that the amplitude of the rogue waves are proportional to the initial stretching ratio of the tube.The high-order nonlinear and dispersion terms lead to the distortion of the wave,while the initial deformation of the tube wall will influence the wave amplitude and wave steepness.