期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于生成对抗网络的多视图学习与重构算法 被引量:15
1
作者 孙亮 +1 位作者 康文婧 葛宏伟 《自动化学报》 EI CSCD 北大核心 2018年第5期819-828,共10页
同一事物通常需要从不同角度进行表达.然而,现实应用经常引出复杂的场景,导致完整视图数据很难获得.因此研究如何构建事物的完整视图具有重要意义.本文提出一种基于生成对抗网络(Generative adversarial networks,GAN)的多视图学习与重... 同一事物通常需要从不同角度进行表达.然而,现实应用经常引出复杂的场景,导致完整视图数据很难获得.因此研究如何构建事物的完整视图具有重要意义.本文提出一种基于生成对抗网络(Generative adversarial networks,GAN)的多视图学习与重构算法,利用已知单一视图,通过生成式方法构建其他视图.为构建多视图通用的表征,提出新型表征学习算法,使得同一实例的任意视图都能映射至相同的表征向量,并保证其包含实例的重构信息.为构建给定事物的多种视图,提出基于生成对抗网络的重构算法,在生成模型中加入表征信息,保证了生成视图数据与源视图相匹配.所提出的算法的优势在于避免了不同视图间的直接映射,解决了训练数据视图不完整问题,以及构造视图与已知视图正确对应问题.在手写体数字数据集MNIST,街景数字数据集SVHN和人脸数据集CelebA上的模拟实验结果表明,所提出的算法具有很好的重构性能. 展开更多
关键词 多视图重构 条件生成对抗网络 多视图表征学习 生成模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部