期刊文献+

基于生成对抗网络的多视图学习与重构算法 被引量:15

Multi-view Learning and Reconstruction Algorithms via Generative Adversarial Networks
下载PDF
导出
摘要 同一事物通常需要从不同角度进行表达.然而,现实应用经常引出复杂的场景,导致完整视图数据很难获得.因此研究如何构建事物的完整视图具有重要意义.本文提出一种基于生成对抗网络(Generative adversarial networks,GAN)的多视图学习与重构算法,利用已知单一视图,通过生成式方法构建其他视图.为构建多视图通用的表征,提出新型表征学习算法,使得同一实例的任意视图都能映射至相同的表征向量,并保证其包含实例的重构信息.为构建给定事物的多种视图,提出基于生成对抗网络的重构算法,在生成模型中加入表征信息,保证了生成视图数据与源视图相匹配.所提出的算法的优势在于避免了不同视图间的直接映射,解决了训练数据视图不完整问题,以及构造视图与已知视图正确对应问题.在手写体数字数据集MNIST,街景数字数据集SVHN和人脸数据集CelebA上的模拟实验结果表明,所提出的算法具有很好的重构性能. Generally, objects often require to represent in different views. However, real-world applications in complex scenarios can hardly have complete views of a given object. In this paper, we propose generative adversarial network(GAN) based multi-view learning and reconstruction algorithms. A novel representation learning algorithm is proposed,which guarantees different views of the same object are mapped to the same representation. Meanwhile, the algorithm guarantees the representation carries enough reconstructed information. To construct multi-views of a given object, a generative adversarial network based reconstruction algorithm is proposed, which includes the representation information in the generation and discrimination models to guarantee the constructed views perfectly map the source view. The merits of the proposed algorithms lie in the fact that they avoid direct mapping among different views, and can solve the problem of missing views in training data and the problem of mapping between constructed views and the source views. Simulated experiments on handwritten digit dataset(MNIST), street view house numbers dataset(SVHN) and Celeb Faces attributes dataset(CelebA) indicate that the proposed algorithms yield satisfactory reconstruction performances.
作者 孙亮 韩毓璇 康文婧 葛宏伟 SUN Liang;HAN Yu-Xuan;KANG Wen-Jing;GE Hong-Wei(College of Computer Science and Technology, Dalian University of Technology, Dalian 116023)
出处 《自动化学报》 EI CSCD 北大核心 2018年第5期819-828,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61402076 61572104 61103146) 吉林大学符号计算与知识工程教育部重点实验室项目(93K172017K03) 中央高校基本科研业务项目(DUT17JC04)资助~~
关键词 多视图重构 条件生成对抗网络 多视图表征学习 生成模型 Multi-view reconstruction conditional generative adversarial networks (CGAN) multi-view representationlearning generative models
  • 相关文献

参考文献6

二级参考文献98

  • 1王飞跃.平行系统方法与复杂系统的管理和控制[J].控制与决策,2004,19(5):485-489. 被引量:331
  • 2王飞跃.计算实验方法与复杂系统行为分析和决策评估[J].系统仿真学报,2004,16(5):893-897. 被引量:147
  • 3王飞跃.关于复杂系统的建模、分析、控制和管理[J].复杂系统与复杂性科学,2006,3(2):26-34. 被引量:64
  • 4史忠值.神经网络[M].北京:高等教育出版社,2009. 被引量:6
  • 5Dalai N, Triggs B. Histograms of oriented gradients for human detection [C] //Proceedings ofConference Computer Vision and Pattern Recognition. Los Alamitos: IEEE Compute Society Press, 2005, 1:886-893. 被引量:1
  • 6Deniz O, Bueno G, Salito J, et al. Face recognition using histograms of oriented gradients [J]. Pattern Recognition Letters, 2011, 32(12): 1598-1603. 被引量:1
  • 7Yang P, Shan S G, Gao W, et al. Face recognition using Aria-Boosted Gabor features [C] //Proceedings of the 6th 1EEE International Conference on Automatic Face and Gesture Recognition. Los Alamitosl IEEE Computer Society Press, 2004:356-361. 被引量:1
  • 8Zhang W C, Shan S G, Gao W, et al. Local Gabor binary pattern histogram sequence ( LGBPHS ) : a novel non-statistical model for face representation and recognition [C] //Proceedings of the 10th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2005:786-791. 被引量:1
  • 9Tan X Y, Triggs B. Fusing Gabor and LBP feature sets for kernel based face recognition [C] //Proceedings of the 3rd International Conference on Analysis and Modeling of Faces and Gestures. Heidelberg: Springer, 2007:235-249. 被引量:1
  • 10Oiala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on feature distributions [J]. Pattern Recognition, 1996, 29(1) : 51-59. 被引量:1

共引文献1206

同被引文献70

引证文献15

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部