无线传感器网络易遭到各种内部攻击,入侵检测系统需要消耗大量能量进行攻击检测以保障网络安全。针对无线传感器网络入侵检测问题,建立恶意节点(malicious node,MN)与簇头节点(cluster head node,CHN)的攻防博弈模型,并提出一种基于强...无线传感器网络易遭到各种内部攻击,入侵检测系统需要消耗大量能量进行攻击检测以保障网络安全。针对无线传感器网络入侵检测问题,建立恶意节点(malicious node,MN)与簇头节点(cluster head node,CHN)的攻防博弈模型,并提出一种基于强化学习的簇头入侵检测算法——带有近似策略预测的策略加权学习算法(weighted policy learner with approximate policy prediction,WPL-APP)。实验表明,簇头节点采用该算法对恶意节点进行动态检测防御,使得博弈双方快速达到演化均衡,避免了网络出现大量检测能量消耗和网络安全性能的波动。展开更多
文摘无线传感器网络易遭到各种内部攻击,入侵检测系统需要消耗大量能量进行攻击检测以保障网络安全。针对无线传感器网络入侵检测问题,建立恶意节点(malicious node,MN)与簇头节点(cluster head node,CHN)的攻防博弈模型,并提出一种基于强化学习的簇头入侵检测算法——带有近似策略预测的策略加权学习算法(weighted policy learner with approximate policy prediction,WPL-APP)。实验表明,簇头节点采用该算法对恶意节点进行动态检测防御,使得博弈双方快速达到演化均衡,避免了网络出现大量检测能量消耗和网络安全性能的波动。