期刊文献+

互补对称布尔函数的非线性度 被引量:1

The Nonlinearity of Complementary Symmetric Boolean Functions
下载PDF
导出
摘要 互补对称布尔函数是一类特殊的对称布尔函数。在所有代数免疫最优的对称布尔函数中,有相当的比例均属此类函数。特别是当变元数量为2m元时,有2/3比例的代数免疫最优对称布尔函数都是互补对称布尔函数。通过布尔函数非线性度、Walsh谱和Krawtchouk多项式间的关系,计算出互补对称布尔函数的非线性度。结果表明,任意n元互补对称布尔函数的非线性度为2n-1-1/2[nn/2] Complementary symmetric Boolean functions are a special class of symmetric Boolean functions. A high proportion of symmetric Boolean functions with optimum algebraic immunity are complementary symmetric Boolean functions. Especially for the case of 2m variables, it reaches a high proportion of 2/3. By the relationship between the nonlinearity and the Walsh spectrum of the Boolean functions, and that between the Walsh spectrum of the Boolean functions and the Krawtchouk polynomial, the nonlinearity of complementary symmetric Boolean functions is determined. As a result, the nonlinearity of all complementary symmetric Boolean functions with n variables is 2^n-1-1/2(n/2^n).
出处 《计算机工程与科学》 CSCD 北大核心 2011年第10期51-56,共6页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60673082) 教育部全国优秀博士学位论文作者专项基金资助项目(200084) 汕头大学科研启动基金资助项目(NTF10018)
关键词 非线性度 代数免疫度 互补对称布尔函数 对称布尔函数 nonlinearity algebraic immunity complementary symmetric Boolean function symmetric Boolean function
  • 相关文献

参考文献2

二级参考文献11

  • 1Deepak Kumar Dalai,Subhamoy Maitra,Sumanta Sarkar.Basic Theory in Construction of Boolean Functions with Maximum Possible Annihilator Immunity[J].Designs Codes and Cryptography.2006(1) 被引量:1
  • 2Armknecht F.Improving fast algebraic attacks[].FSE.2004 被引量:1
  • 3Batten L M.Algebraic attacks over GF(q)[].INDOCRYPT.2004 被引量:1
  • 4Courtois N,Pieprzyk J.Cryptanalysis of block ciphers with over-defined systems of equations[].ASIACRYPT.2002 被引量:1
  • 5Courtois N,Meier W.Algebraic attacks on stream ciphers with linear feedback[].EUROCRYPT.2003 被引量:1
  • 6Courtois N.Fast algebraic attacks on stream ciphers with linear feedback[].CRYPTO.2003 被引量:1
  • 7Dalai D K,Gupta K C,aitra S.Results on algebraic immunity for cryptographically significant Boolean functions[].INDOCRYPT.2004 被引量:1
  • 8Meier W,Pasalic E,Carlet C.Algebraic attacks and decomposition of Boolean functions[].Advances in Cryptol- ogy-EUROCRYPT.2004 被引量:1
  • 9Braeken A,Preneel B.On the algebraic immunity of symmetric Boolean functions[].INDOCRYPT.2005 被引量:1
  • 10Dalai D K,Maitra S,Sarkar S.Basic theory in construction of Boolean functions with maximum possible annihilator im- munity[].Design Code Cryptog.2006 被引量:1

共引文献11

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部