Barium titanate(BTO) thin films were deposited on polycrystalline Ni foils by using the polymer assisted deposition(PAD) technique.The growth conditions including ambient and annealing temperatures were carefully ...Barium titanate(BTO) thin films were deposited on polycrystalline Ni foils by using the polymer assisted deposition(PAD) technique.The growth conditions including ambient and annealing temperatures were carefully optimized based on thermal dynamic analysis to control the oxidation processing and interdiffusion.Crystal structures,surface morphologies,and dielectric performance were examined and compared for BTO thin films annealed under different temperatures.Correlations between the fabrication conditions,microstructures,and dielectric properties were discussed.BTO thin films fabricated under the optimized conditions show good crystalline structure and promising dielectric properties with εr~ 400 and tan δ 〈 0.025 at 100 kHz.The data demonstrate that BTO films grown on polycrystalline Ni substrates by PAD are promising in device applications.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11028409 and 60976061)the Fundamental Research Funds for the Central Universities of China (Grant No. ZYGX2009Z0001)
文摘Barium titanate(BTO) thin films were deposited on polycrystalline Ni foils by using the polymer assisted deposition(PAD) technique.The growth conditions including ambient and annealing temperatures were carefully optimized based on thermal dynamic analysis to control the oxidation processing and interdiffusion.Crystal structures,surface morphologies,and dielectric performance were examined and compared for BTO thin films annealed under different temperatures.Correlations between the fabrication conditions,microstructures,and dielectric properties were discussed.BTO thin films fabricated under the optimized conditions show good crystalline structure and promising dielectric properties with εr~ 400 and tan δ 〈 0.025 at 100 kHz.The data demonstrate that BTO films grown on polycrystalline Ni substrates by PAD are promising in device applications.