提出了融合深度图像先验的全变差(total variation,TV)图像着色模型,在即插即用(plug-and-play,PnP)框架下,结合交替方向乘子法(alternating direction method of multipliers,ADMM),设计出相应的数值求解算法,并给出该算法的收敛性结...提出了融合深度图像先验的全变差(total variation,TV)图像着色模型,在即插即用(plug-and-play,PnP)框架下,结合交替方向乘子法(alternating direction method of multipliers,ADMM),设计出相应的数值求解算法,并给出该算法的收敛性结果。数值实验结果表明,该模型能有效整合耦合TV边缘捕获和卷积神经网络(convolutional neural network,CNN)细节捕捉的功能,对结构图像和纹理等细节丰富的图像,均能实现较大范围的有效着色。展开更多
文摘提出了融合深度图像先验的全变差(total variation,TV)图像着色模型,在即插即用(plug-and-play,PnP)框架下,结合交替方向乘子法(alternating direction method of multipliers,ADMM),设计出相应的数值求解算法,并给出该算法的收敛性结果。数值实验结果表明,该模型能有效整合耦合TV边缘捕获和卷积神经网络(convolutional neural network,CNN)细节捕捉的功能,对结构图像和纹理等细节丰富的图像,均能实现较大范围的有效着色。