期刊文献+

保持泊松噪声图像细节的快速变分去噪算法 被引量:4

Fast variational algorithm based on detail preserving for Poisson noise removal
下载PDF
导出
摘要 去除医学、天文图像中的泊松噪声一直是人们关注的热点问题之一。在充分分析泊松去噪α-Le模型的基础上结合交替方向乘子(ADMM)算法,给出该模型一基于框式约束的快速求解算法,并证明了该算法的收敛性。数值实验结果表明,该算法在去噪的同时,不仅能很好地保留图像中的边缘及小细节特征,还能大幅提高运算效率。 The removal problem of Poisson noise in the medical, astronomical images has been one of the hot topics untilnow. In this paper, it firstly analyzes the α -Le model of Poisson noise removal and develops a fast algorithm based on abox constraint to solve numerically the model by incorporating Alternating Direction Multiplier(ADMM) algorithm.Then the convergence of the fast algorithm is proved. Finally, numerical results are reported to show that the proposedalgorithm, at the same time of denoising, not only preserves small detail characteristics in images, but also improves greatlythe computational efficiency.
作者 杨燕 金正猛 蒋晓连 刘艳 张永燕 YANG Yan;JIN Zhengmeng;JIANG Xiaolian;LIU Yan;ZHANG Yongyan(School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210046, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第20期172-176,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.11101218) 江苏省重点STITP项目(No.SZDG2014025)
关键词 图像去噪 泊松噪声 交替方向乘子(ADMM)算法 细节 image denoising Poisson noise Alternating Direction Method of Multipliers(ADMM)algorithm details
  • 相关文献

参考文献17

  • 1Nodes T,Gallagher N.Median filters:some modificationsand their properties[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1982,30(5):739-746. 被引量:1
  • 2Zhang Huipin.Spatially adaptive-Wiener filtering for imagedenoising using undecimated wavelet transform[R].Houston:Rice University,1999. 被引量:1
  • 3Lefkimmiatis S,Papandreous G,Maragos P.Photon-limitedimage denoising by inference on multiscale models[J].IEEETransactions on Image Processing,2008,15:2332-2335. 被引量:1
  • 4Luisier F,Vonesch C,Blu T.Fast interscale wavelet denoisingof Poisson-corrupted images[J].Signal Processing,2010,90(2):415-427. 被引量:1
  • 5Chinna R B,Madhavi L M.A combination of wavelet andfractal image denoising technique[J].International Journalof Electronics Engineering,2010,2(2):259-264. 被引量:1
  • 6孙玉宝,韦志辉,吴敏,肖亮,费选.稀疏性正则化的图像泊松去噪算法[J].电子学报,2011,39(2):285-290. 被引量:20
  • 7白键,冯象初.一种基于积分微分方程的泊松噪声去除算法[J].电子与信息学报,2013,35(2):451-456. 被引量:7
  • 8Rudin L I,Osher S,Fatemi E.Nonlinear total variationbased noise removal algorithms[J].Physica D,1992,60(1/4):259-268. 被引量:1
  • 9Le T,Chartrand R,Asaki T J.A variational approach toreconstructing images corrupted by Poisson noise[J].Journalof Mathematical Imaging and Vision,2007,27(3):257-263. 被引量:1
  • 10Dong Gang,Guo Zhichang,Wu Boying.A convex adaptivetotal variation model based on the gray level indicatorfor multiplicative noise removal[C].Abstract andApplied Analysis,2013. 被引量:1

二级参考文献17

  • 1F J Anscombe. The transformation of Poisson, binomial and negative-binomial data[ J ]. Biomelrika, 1948, 35 ( 3 ) : 246 - 254. 被引量:1
  • 2B Zhang,M Fadili,J-L Starck. Wavelets,ridgelets and curvelets for poisson noise removal [ J ]. IEEE Trans Image Process, 2008,17(7) : 1093 - 1108. 被引量:1
  • 3E D. Kolaczyk. Nonparametxic estimation of intensity maps us ing Haar wavelets and Poisson noise characteristics[ J]. The As trophysical Journal, 2000,534( 1 ) :490- 505. 被引量:1
  • 4A Bijaoui, G Jammal. On the distribution of the wavelet coeffi cient for a Poisson noise[ J] .Signal Process,2001,81 (9) : 1789 -1800. 被引量:1
  • 5R Nowak, E Kolaczyk. A statistical multiscale framework for poisson inverse problems[ J]. IEEE.Transactions on Information Theory,2000,46(5) : 1811 - 1825. 被引量:1
  • 6R WiUett, R Nowak. Fast multiresolufion photon-limited image reconstruction[ A]. Proc IEEE. hat Sym Biomedical Imaging (ISBI '04) [C]. Arlington: IEEE Press,2004.1192 - 1195. 被引量:1
  • 7S Setzer. Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage[ A]. Lecture Notes In Computer Science [ C]. Voss: Springer-Verlag , 2(109.5567.464 - 476. 被引量:1
  • 8Stanley Osher, Martin Burger, et al. An iterative reguladzafion method for total variation-based image restoration[ J]. Mulli- scale Model, Simul, 2005,4 (2) : 460 - 489. 被引量:1
  • 9S Osher, Y Mao, et al. Fast linearized Bregman iteration for compressive sensing and sparse denoising[ J]. Communications in Mathematical Sciences, 2010,8( 1 ) : 93 - 111. 被引量:1
  • 10M Fadili, J-L Starck, F. Murtagh. Inpainting and zooming us ing sparse representations[ J]. The Computer Journal,2009,52 (1):64-79. 被引量:1

共引文献24

同被引文献42

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部