By combining a silicon-based lithium niobate modulator and a silicon-based Si3N4resonator with silicon-based photonics technology,a highly systematic design of a hybrid integrated optical gyroscope with enhanced recip...By combining a silicon-based lithium niobate modulator and a silicon-based Si3N4resonator with silicon-based photonics technology,a highly systematic design of a hybrid integrated optical gyroscope with enhanced reciprocity sensitivity and a dual micro-ring structure is proposed for the first time in this paper.The relationship between the device's structural parameters and optical performance is also analyzed by constructing a complete simulation link,which provides a theoretical design reference to improve the system's sensitivity.When the wavelength is 1550 nm,the conversion frequency of the dual-ring optical path is 50 MHz,the coupling coefficient is 0.2,and the radius R is 1000μm,the quality factor of the silicon-based Si_(3)N_(4)resonator is 2.58×10^(5),which is 1.58 times that of the silicon-on-insulator resonator.Moreover,the effective number of times the light travels around the ring before leaving the micro-ring is 5.93,which is 1.62 times that of the silicon-on-insulator resonator.The work fits the gyro dynamic output diagram,and solves the problem of low sensitivity at low speed by setting the phase offset.This results provide a basis for the further optimization of design and chip processing of the integrated optical gyroscope.展开更多
We systematically investigate the influence of InSb interface(IF)engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-Ⅱsuperlattices(T2SLs).The type-Ⅱsuperlattice structure is ...We systematically investigate the influence of InSb interface(IF)engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-Ⅱsuperlattices(T2SLs).The type-Ⅱsuperlattice structure is 120 periods InAs(8 ML)/GaSb(6 ML)with different thicknesses of InSb interface grown by molecular beam epitaxy(MBE).The highresolution x-ray diffraction(XRD)curves display sharp satellite peaks,and the narrow full width at half maximum(FWHM)of the 0th is only 30-39 arcsec.From high-resolution cross-sectional transmission electron microscopy(HRTEM)characterization,the InSb heterointerfaces and the clear spatial separation between the InAs and GaSb layers can be more intuitively distinguished.As the InSb interface thickness increases,the compressive strain increases,and the surface“bright spots”appear to be more apparent from the atomic force microscopy(AFM)results.Also,photoluminescence(PL)measurements verify that,with the increase in the strain,the bandgap of the superlattice narrows.By optimizing the InSb interface,a high-quality crystal with a well-defined surface and interface is obtained with a PL wavelength of 4.78μm,which can be used for mid-wave infrared(MWIR)detection.展开更多
We report the growth of a-plane InN on an r-plane sapphire substrate by plasma-assisted molecular-beam epitaxy. It is found that the a-plane InN is successfully grown by using a CaN buffer layer, which has been confir...We report the growth of a-plane InN on an r-plane sapphire substrate by plasma-assisted molecular-beam epitaxy. It is found that the a-plane InN is successfully grown by using a CaN buffer layer, which has been confirmed by reflection high-energy electron diffraction, x-ray diffraction and Raman scattering measurements. The Hall effect measurement shows that the electron mobility of the as-grown a-plane InN is about 406 cm^2/V·s with a residual electron concentration of 5.7 × 10^18 cm^-3. THz emission from the a-plane InN film is also studied, where it is found that the emission amplitude is inversely proportional to the conductivity.展开更多
基金Project supported by the science and technology general project of Beijing Municipal Education Commission(Grant No.KM202111232019)Beijing Municipal Natural Science Foundation(Grant No.2214058)+4 种基金the Discipline Innovation Program of Higher Education(Grant No.D17021)the Open Project of the State Key Laboratory of Integrated Optoelectronics(Grant No.IOSKL2020KF22)Beijing Great Wall Scholars Program(Grant No.CIT&TCD20190323)the National Natural Science Foundation of China(Grant No.61875237)Beijing Youth Talent Support Program(Grant No.Z2019042)。
文摘By combining a silicon-based lithium niobate modulator and a silicon-based Si3N4resonator with silicon-based photonics technology,a highly systematic design of a hybrid integrated optical gyroscope with enhanced reciprocity sensitivity and a dual micro-ring structure is proposed for the first time in this paper.The relationship between the device's structural parameters and optical performance is also analyzed by constructing a complete simulation link,which provides a theoretical design reference to improve the system's sensitivity.When the wavelength is 1550 nm,the conversion frequency of the dual-ring optical path is 50 MHz,the coupling coefficient is 0.2,and the radius R is 1000μm,the quality factor of the silicon-based Si_(3)N_(4)resonator is 2.58×10^(5),which is 1.58 times that of the silicon-on-insulator resonator.Moreover,the effective number of times the light travels around the ring before leaving the micro-ring is 5.93,which is 1.62 times that of the silicon-on-insulator resonator.The work fits the gyro dynamic output diagram,and solves the problem of low sensitivity at low speed by setting the phase offset.This results provide a basis for the further optimization of design and chip processing of the integrated optical gyroscope.
基金Project supported by the Beijing Scholars Program(Grant No.74A2111113)the Research Project of Beijing Education Committee(Grant No.KM202111232019)+1 种基金the National Natural Science Foundation of China(Grant No.62105039)the Research Project of Beijing Information Science&Technology University(Grant No.2022XJJ07)
文摘We systematically investigate the influence of InSb interface(IF)engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-Ⅱsuperlattices(T2SLs).The type-Ⅱsuperlattice structure is 120 periods InAs(8 ML)/GaSb(6 ML)with different thicknesses of InSb interface grown by molecular beam epitaxy(MBE).The highresolution x-ray diffraction(XRD)curves display sharp satellite peaks,and the narrow full width at half maximum(FWHM)of the 0th is only 30-39 arcsec.From high-resolution cross-sectional transmission electron microscopy(HRTEM)characterization,the InSb heterointerfaces and the clear spatial separation between the InAs and GaSb layers can be more intuitively distinguished.As the InSb interface thickness increases,the compressive strain increases,and the surface“bright spots”appear to be more apparent from the atomic force microscopy(AFM)results.Also,photoluminescence(PL)measurements verify that,with the increase in the strain,the bandgap of the superlattice narrows.By optimizing the InSb interface,a high-quality crystal with a well-defined surface and interface is obtained with a PL wavelength of 4.78μm,which can be used for mid-wave infrared(MWIR)detection.
基金Supported by the National Basic Research Program of China under Grant No 2012CB619300, the National Natural Science Foundation of China under Grant Nos 61225019, 11023003 and 61376060, and the National High-Technology Research and Devel- opment Program of China under Grant No 2011AA050514.
文摘We report the growth of a-plane InN on an r-plane sapphire substrate by plasma-assisted molecular-beam epitaxy. It is found that the a-plane InN is successfully grown by using a CaN buffer layer, which has been confirmed by reflection high-energy electron diffraction, x-ray diffraction and Raman scattering measurements. The Hall effect measurement shows that the electron mobility of the as-grown a-plane InN is about 406 cm^2/V·s with a residual electron concentration of 5.7 × 10^18 cm^-3. THz emission from the a-plane InN film is also studied, where it is found that the emission amplitude is inversely proportional to the conductivity.