为更好地掌握核电站关键设备在客观性能上的质量状况,提出利用基于熵权的逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)对核电设备质量进行评价。以核电厂压力容器堆芯筒节为例,验证了基...为更好地掌握核电站关键设备在客观性能上的质量状况,提出利用基于熵权的逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)对核电设备质量进行评价。以核电厂压力容器堆芯筒节为例,验证了基于熵权的TOPSIS评价法可有效、科学、客观地评价设备的性能状况,最后剖析了该方法的特点和局限性。应用结果表明,该方法适用于评价核电站关键设备制造质量。展开更多
设计并封装了一款1 700 V/1 600 A Si C混合IGBT功率模块,对模块进行了常规电学特性测试,并与全Si功率模块进行了比较。由于Si C肖特基二极管优异的反向恢复特性,使得模块的开关性能得到明显提升,有效降低了模块的能量损耗。通过优化模...设计并封装了一款1 700 V/1 600 A Si C混合IGBT功率模块,对模块进行了常规电学特性测试,并与全Si功率模块进行了比较。由于Si C肖特基二极管优异的反向恢复特性,使得模块的开关性能得到明显提升,有效降低了模块的能量损耗。通过优化模块结构及栅极串联电阻,进一步降低了模块的开关损耗,使Si C混合模块比全Si IGBT模块具有更加优越的性能。展开更多
衬底减薄可以大幅提升SiC结势垒肖特基(JBS)二极管的电流密度,但减薄工艺和减薄引入的激光退火工艺仍面临巨大挑战。使用不同型号的金刚砂轮模拟了SiC衬底减薄精磨过程,研究了精磨后SiC衬底的界面质量;同时,使用波长为355 nm的紫外激光...衬底减薄可以大幅提升SiC结势垒肖特基(JBS)二极管的电流密度,但减薄工艺和减薄引入的激光退火工艺仍面临巨大挑战。使用不同型号的金刚砂轮模拟了SiC衬底减薄精磨过程,研究了精磨后SiC衬底的界面质量;同时,使用波长为355 nm的紫外激光器退火Ni/4H-SiC结构,分析了激光能量密度对欧姆接触的性能影响;最后,结合减薄工艺和激光退火工艺制备了厚度为100μm的1 200 V/15 A SiC JBS二极管。结果表明,使用超精细砂轮精磨SiC衬底后,其表面粗糙度为1.26 nm,纵向损伤层厚度约为60 nm;当激光能量密度为1.8 J/cm^(2)时,能形成良好的欧姆接触,比接触电阻率为7.42×10^(-5)Ω·cm^(2);厚度减薄至100μm的1 200 V/15 A SiC JBS二极管在不损失阻断性能的情况下,其正向导通压降比未减薄的减小了0.15 V,电流密度提升了41.27%。展开更多
文摘为更好地掌握核电站关键设备在客观性能上的质量状况,提出利用基于熵权的逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)对核电设备质量进行评价。以核电厂压力容器堆芯筒节为例,验证了基于熵权的TOPSIS评价法可有效、科学、客观地评价设备的性能状况,最后剖析了该方法的特点和局限性。应用结果表明,该方法适用于评价核电站关键设备制造质量。
文摘设计并封装了一款1 700 V/1 600 A Si C混合IGBT功率模块,对模块进行了常规电学特性测试,并与全Si功率模块进行了比较。由于Si C肖特基二极管优异的反向恢复特性,使得模块的开关性能得到明显提升,有效降低了模块的能量损耗。通过优化模块结构及栅极串联电阻,进一步降低了模块的开关损耗,使Si C混合模块比全Si IGBT模块具有更加优越的性能。
文摘衬底减薄可以大幅提升SiC结势垒肖特基(JBS)二极管的电流密度,但减薄工艺和减薄引入的激光退火工艺仍面临巨大挑战。使用不同型号的金刚砂轮模拟了SiC衬底减薄精磨过程,研究了精磨后SiC衬底的界面质量;同时,使用波长为355 nm的紫外激光器退火Ni/4H-SiC结构,分析了激光能量密度对欧姆接触的性能影响;最后,结合减薄工艺和激光退火工艺制备了厚度为100μm的1 200 V/15 A SiC JBS二极管。结果表明,使用超精细砂轮精磨SiC衬底后,其表面粗糙度为1.26 nm,纵向损伤层厚度约为60 nm;当激光能量密度为1.8 J/cm^(2)时,能形成良好的欧姆接触,比接触电阻率为7.42×10^(-5)Ω·cm^(2);厚度减薄至100μm的1 200 V/15 A SiC JBS二极管在不损失阻断性能的情况下,其正向导通压降比未减薄的减小了0.15 V,电流密度提升了41.27%。