计算机视觉技术使得人类手势识别在工业应用中发挥了重要作用,如人机交互等.该方法提出了一种基于手工提取特征的动态手势分割和分类方法,这些特征是从Kinetic传感器提供的骨架数据中提取出来的.其中,手势检测模块依赖于前馈神经网络,...计算机视觉技术使得人类手势识别在工业应用中发挥了重要作用,如人机交互等.该方法提出了一种基于手工提取特征的动态手势分割和分类方法,这些特征是从Kinetic传感器提供的骨架数据中提取出来的.其中,手势检测模块依赖于前馈神经网络,该神经网络执行逐帧的二分类.手势识别方法采用滑动窗口的方式从空间和时间维度提取信息.然后,本文组合不同持续时间的窗口,以获得多时间尺度方法所带来的性能增益.受递归神经网络最近在时间序列领域验证成功的启发,该方法还提出了一种基于双向长短期记忆单元来同时进行手势分割和分类的方法,该方法具有在长时间尺度上学习时间关系的能力.所提方法评估了2014年ChaLearn Looking at People挑战赛数据集,并与其他不同方法进行对比,该方法的性能几乎与最先进的技术相匹配.最后,该方法识别出的手势可以应用于与协作机器人进行交互.展开更多
文摘计算机视觉技术使得人类手势识别在工业应用中发挥了重要作用,如人机交互等.该方法提出了一种基于手工提取特征的动态手势分割和分类方法,这些特征是从Kinetic传感器提供的骨架数据中提取出来的.其中,手势检测模块依赖于前馈神经网络,该神经网络执行逐帧的二分类.手势识别方法采用滑动窗口的方式从空间和时间维度提取信息.然后,本文组合不同持续时间的窗口,以获得多时间尺度方法所带来的性能增益.受递归神经网络最近在时间序列领域验证成功的启发,该方法还提出了一种基于双向长短期记忆单元来同时进行手势分割和分类的方法,该方法具有在长时间尺度上学习时间关系的能力.所提方法评估了2014年ChaLearn Looking at People挑战赛数据集,并与其他不同方法进行对比,该方法的性能几乎与最先进的技术相匹配.最后,该方法识别出的手势可以应用于与协作机器人进行交互.