多系统萎缩(multiple system atrophy,MSA)是一种成年起病、进展性的神经系统变性疾病,表现为不同程度的自主神经功能障碍、对左旋多巴类药物反应不良的帕金森综合征、小脑性共济失调及锥体束征等临床特征。由于起病时累及3个系统的...多系统萎缩(multiple system atrophy,MSA)是一种成年起病、进展性的神经系统变性疾病,表现为不同程度的自主神经功能障碍、对左旋多巴类药物反应不良的帕金森综合征、小脑性共济失调及锥体束征等临床特征。由于起病时累及3个系统的先后不同,临床表现复杂,可出现尿失禁、体位性低血压、运动迟缓、行走不稳等症状,还可能出现精神情感障碍[1],但合并特殊类型睡眠障碍患者少见。随着病程进展。展开更多
GaN-based thin film vertical structure light-emitting diodes (VS-LEDs) were fabricated by a modified YAG laser lift-off (LLO) process and transferred to Cu substrates. With a comparison of the electrical and optic...GaN-based thin film vertical structure light-emitting diodes (VS-LEDs) were fabricated by a modified YAG laser lift-off (LLO) process and transferred to Cu substrates. With a comparison of the electrical and optical properties of conventional LEDs on sapphire substrates and of lateral structure thin film LEDs by a KrF LLO process, the vertical structure of LLO LEDs shows obvious superiority. LLO VSLEDs made by modified YAG LLO process show less increase of leakage current than the devices made by conventional/(rE LLO process. Furthermore, owing to the well current spreading and less current path, the ideality factors and series resistance of vertical structure LEDs reduce greatly and the efficiency increases more obviously than the lateral structure LEDs, which is dso reflected on the relative L - I curves. The output power of vertical structure LEDs is over 3 times greater than that of the lateral structure LLO LEDs within 300mA.展开更多
Polarization-resolved edge-emitting electroluminescence (EL) studies of In GaN/GaN MQWs of wavelengths from near-UV (390nm) to blue (468nm) light-emitting diodes (LEDs) are performed. Although the TE mode is d...Polarization-resolved edge-emitting electroluminescence (EL) studies of In GaN/GaN MQWs of wavelengths from near-UV (390nm) to blue (468nm) light-emitting diodes (LEDs) are performed. Although the TE mode is dominant in all the samples of InGaN/GaN MQW LEDs, an obvious difference of light polarization properties is found in the InGaN/GaN MQW LEDs with different wavelengths. The polarization degree decreases from 52.4% to 26.9% when light wavelength increases. Analyses of band structures of InGaN/GaN quantum wells and luminescence properties of quantum dots imply that quantum-dot-like behavior is the dominant reason for the low luminescence polarization degree of blue LEDs, and the high luminescence polarization degree of UV LEDs mainly comes from QW confinement and the strain effect. Therefore, indium induced carrier confinement (quantum-dot-like behavior) might play a major role in the polarization degree change of InGaN/GaN MQW LEDs from near violet to blue.展开更多
Strain effects on the polarized optical properties of c-plane and m-plane InxGa1-xN were discussed for different In compositions (x = 0, 0.05, 0.10, 0.15) by analyzing the relative oscillator strength (ROS) and en...Strain effects on the polarized optical properties of c-plane and m-plane InxGa1-xN were discussed for different In compositions (x = 0, 0.05, 0.10, 0.15) by analyzing the relative oscillator strength (ROS) and energy level splitting of the three transitions related to the top three valence bands (VBs). The ROS was calculated by applying the effective-mass Hamiltonian based on k .p perturbation theory. For c-plane InxGa1-xN, it was found that the ROS of 〈X〉 and 〈Y〉-like states were superposed with each other. Especially, under compressive strain, they dominated in the top VB whose energy level also went up with strain, while the ROS of the |Z〉-like state decreased in the second band. For m-plane InxGa1-xN under compressive strain, the top three VBs were dominated by 〈X〉, 〈Z〉, and 〈Y〉-like states, respectively, which led to nearly linearly-polarized light emissions. For the top VB, ROS difference between [X) and [Z)-like states became larger with compressive strain. It was also found that such tendencies were more evident in layers with higher In compositions. As a result, there would be more TE modes in total emissions from both c-plane and m-plane InGaN with compressive strain and In content, leading to a larger polarization degree. Experimental results of luminescence from InGaN/GaN quantum wells (QWs) showed good coincidence with our calculations.展开更多
Electrical characteristics of In0.05 Ga0.95N/Al0.07Ga0.9aN and In0.05 Ga0.95N/GaN multiple quantum well (MQW) ultraviolet light-emltting diodes (UV-LEDs) at 400hm wavelength are measured. It is found that for InGa...Electrical characteristics of In0.05 Ga0.95N/Al0.07Ga0.9aN and In0.05 Ga0.95N/GaN multiple quantum well (MQW) ultraviolet light-emltting diodes (UV-LEDs) at 400hm wavelength are measured. It is found that for InGaN/AlGaN MQW LEDs, both ideality factor and parallel resistance are similar to those of InGaN/GaN MQW LEDs, while series resistance is two times larger. It is suggested that the Al0.07Ga0.93N barrier layer did not change crystal quality and electrical characteristic of p-n junction either, but brought larger series resistance. As a result, InGaN/AlGaN MQW LEDs suffer more serious thermal dissipation problem although they show higher light output efficiency.展开更多
文摘多系统萎缩(multiple system atrophy,MSA)是一种成年起病、进展性的神经系统变性疾病,表现为不同程度的自主神经功能障碍、对左旋多巴类药物反应不良的帕金森综合征、小脑性共济失调及锥体束征等临床特征。由于起病时累及3个系统的先后不同,临床表现复杂,可出现尿失禁、体位性低血压、运动迟缓、行走不稳等症状,还可能出现精神情感障碍[1],但合并特殊类型睡眠障碍患者少见。随着病程进展。
基金Supported by the National Natural Science Foundation of China under Grant Nos 61006035, 61076012, 60676032 and 60607003, the National Key Basic Research Program of China under Grant No TG-2007CB307004, the National High-Tech Research and Development Program of China under Grant No 2009AA03A198, and the Postdoctoral Science Foundation of China under Grant No 20090460168
文摘GaN-based thin film vertical structure light-emitting diodes (VS-LEDs) were fabricated by a modified YAG laser lift-off (LLO) process and transferred to Cu substrates. With a comparison of the electrical and optical properties of conventional LEDs on sapphire substrates and of lateral structure thin film LEDs by a KrF LLO process, the vertical structure of LLO LEDs shows obvious superiority. LLO VSLEDs made by modified YAG LLO process show less increase of leakage current than the devices made by conventional/(rE LLO process. Furthermore, owing to the well current spreading and less current path, the ideality factors and series resistance of vertical structure LEDs reduce greatly and the efficiency increases more obviously than the lateral structure LEDs, which is dso reflected on the relative L - I curves. The output power of vertical structure LEDs is over 3 times greater than that of the lateral structure LLO LEDs within 300mA.
基金Supported by the National Natural Science Foundation of China under Grant No 60676032, and the National Key Basic Research Special Foundation of China under Grant No TG2007CB307004.
文摘Polarization-resolved edge-emitting electroluminescence (EL) studies of In GaN/GaN MQWs of wavelengths from near-UV (390nm) to blue (468nm) light-emitting diodes (LEDs) are performed. Although the TE mode is dominant in all the samples of InGaN/GaN MQW LEDs, an obvious difference of light polarization properties is found in the InGaN/GaN MQW LEDs with different wavelengths. The polarization degree decreases from 52.4% to 26.9% when light wavelength increases. Analyses of band structures of InGaN/GaN quantum wells and luminescence properties of quantum dots imply that quantum-dot-like behavior is the dominant reason for the low luminescence polarization degree of blue LEDs, and the high luminescence polarization degree of UV LEDs mainly comes from QW confinement and the strain effect. Therefore, indium induced carrier confinement (quantum-dot-like behavior) might play a major role in the polarization degree change of InGaN/GaN MQW LEDs from near violet to blue.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60676032,60577030 and 60776042)National Key Basic Research Special Foundation of China (Grant No TG 2007CB307004)
文摘Strain effects on the polarized optical properties of c-plane and m-plane InxGa1-xN were discussed for different In compositions (x = 0, 0.05, 0.10, 0.15) by analyzing the relative oscillator strength (ROS) and energy level splitting of the three transitions related to the top three valence bands (VBs). The ROS was calculated by applying the effective-mass Hamiltonian based on k .p perturbation theory. For c-plane InxGa1-xN, it was found that the ROS of 〈X〉 and 〈Y〉-like states were superposed with each other. Especially, under compressive strain, they dominated in the top VB whose energy level also went up with strain, while the ROS of the |Z〉-like state decreased in the second band. For m-plane InxGa1-xN under compressive strain, the top three VBs were dominated by 〈X〉, 〈Z〉, and 〈Y〉-like states, respectively, which led to nearly linearly-polarized light emissions. For the top VB, ROS difference between [X) and [Z)-like states became larger with compressive strain. It was also found that such tendencies were more evident in layers with higher In compositions. As a result, there would be more TE modes in total emissions from both c-plane and m-plane InGaN with compressive strain and In content, leading to a larger polarization degree. Experimental results of luminescence from InGaN/GaN quantum wells (QWs) showed good coincidence with our calculations.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60676032, 60577030, and 60476028, and the National Key Basic Research Special Foundation of China under Grant No TG 2007CB307004.
文摘Electrical characteristics of In0.05 Ga0.95N/Al0.07Ga0.9aN and In0.05 Ga0.95N/GaN multiple quantum well (MQW) ultraviolet light-emltting diodes (UV-LEDs) at 400hm wavelength are measured. It is found that for InGaN/AlGaN MQW LEDs, both ideality factor and parallel resistance are similar to those of InGaN/GaN MQW LEDs, while series resistance is two times larger. It is suggested that the Al0.07Ga0.93N barrier layer did not change crystal quality and electrical characteristic of p-n junction either, but brought larger series resistance. As a result, InGaN/AlGaN MQW LEDs suffer more serious thermal dissipation problem although they show higher light output efficiency.