In general, Liouville integrable hierarchies of evolution equations were obtained by choosing proper U in zero curvature frame Ut - Vx + [U, V] = 0 first. But in the present paper, a new Liouville integrable hierarchy...In general, Liouville integrable hierarchies of evolution equations were obtained by choosing proper U in zero curvature frame Ut - Vx + [U, V] = 0 first. But in the present paper, a new Liouville integrable hierarchy possessing bi-Hamiltonian structure is obtained by choosing V with derivatives in x and spectral potentials. Then integrable coupling, i.e. expanding Lax integrable model of the hierarchy obtained is presented by constructing a subalgebra of loop algebra A2.展开更多
In this paper a type of 9-dimensional vector loop algebra F is constructed, which is devoted to establish an isospectral problem. It follows that a Liouville integrable coupling system of the m-AKNS hierarchy is obtai...In this paper a type of 9-dimensional vector loop algebra F is constructed, which is devoted to establish an isospectral problem. It follows that a Liouville integrable coupling system of the m-AKNS hierarchy is obtained by employing the Tu scheme, whose Hamiltonian structure is worked out by making use of constructed quadratic identity. The method given in the paper can be used to obtain many other integrable couplings and their Hamiltonian structures.展开更多
文摘In general, Liouville integrable hierarchies of evolution equations were obtained by choosing proper U in zero curvature frame Ut - Vx + [U, V] = 0 first. But in the present paper, a new Liouville integrable hierarchy possessing bi-Hamiltonian structure is obtained by choosing V with derivatives in x and spectral potentials. Then integrable coupling, i.e. expanding Lax integrable model of the hierarchy obtained is presented by constructing a subalgebra of loop algebra A2.
文摘In this paper a type of 9-dimensional vector loop algebra F is constructed, which is devoted to establish an isospectral problem. It follows that a Liouville integrable coupling system of the m-AKNS hierarchy is obtained by employing the Tu scheme, whose Hamiltonian structure is worked out by making use of constructed quadratic identity. The method given in the paper can be used to obtain many other integrable couplings and their Hamiltonian structures.