A novel and facile wet-chemical method for synthesis of silver microwires was developed.The well-defined particles were prepared by adding an iron(Ⅱ) sulfate heptahydrate solution into a silver nitrate solution con...A novel and facile wet-chemical method for synthesis of silver microwires was developed.The well-defined particles were prepared by adding an iron(Ⅱ) sulfate heptahydrate solution into a silver nitrate solution containing citric acid drop by drop at 50 °C.The resulting products were characterized by scanning electron microscopy and X-ray diffraction.It was found that the particles consisted of numerous silver microwires.The reaction temperature greatly affected the morphologies of the as-prepared particles.Both of the mean length and width of the silver microwires increased with the decrease of the concentration of silver nitrate.And the lower concentration was unfavorable for the formation of more silver microwires.Similar findings were also observed when the concentration of iron(Ⅱ) sulfate was decreased.The amount of citric acid also greatly affected the shape of the as-prepared particles.It was concluded that citric acid was the key role in the formation of silver microwires via the Oswald ripening mechanism.展开更多
To further improve the charge separation and photocatalytic activities of g-C3N4 and CdMoO4 under visible light irradiation,CdMoO4/g-C3N4 composites were rationally synthesized by a facile precipitation-calcination pr...To further improve the charge separation and photocatalytic activities of g-C3N4 and CdMoO4 under visible light irradiation,CdMoO4/g-C3N4 composites were rationally synthesized by a facile precipitation-calcination procedure.The crystal phases,morphologies,chemical compositions,textural structures,and optical properties of the as-prepared composites were characterized by the corresponding analytical techniques.The photocatalytic activities toward degradation of rhodamine B solution were evaluated under visible light irradiation.The results revealed that integrating CdMoO4 with g-C3N4 could remarkably improve the charge separation and photocatalytic activity,compared with those of pristine g-C3N4 and CdMoO4.This would be because the CdMoO4/g-C3N4 composites could facilitate the transfer and separation of the photoexcited electron-hole pairs,which was confirmed by electrochemical impedance spectroscopy,transient photocurrent responses,and photoluminescence measurements.Moreover,active species trapping experiments demonstrated that holes(h+)and superoxide radicals(?O2?)were the main active species during the photocatalytic reaction.A possible photocatalytic mechanism was proposed on the basis of the energy band structures determined by Mott-Schottky tests.This work would provide further insights into the rational fabrication of composites for organic contaminant removal.展开更多
基金Project (2011CDC114) supported by the Hubei Provincial Natural Science Foundation of China
文摘A novel and facile wet-chemical method for synthesis of silver microwires was developed.The well-defined particles were prepared by adding an iron(Ⅱ) sulfate heptahydrate solution into a silver nitrate solution containing citric acid drop by drop at 50 °C.The resulting products were characterized by scanning electron microscopy and X-ray diffraction.It was found that the particles consisted of numerous silver microwires.The reaction temperature greatly affected the morphologies of the as-prepared particles.Both of the mean length and width of the silver microwires increased with the decrease of the concentration of silver nitrate.And the lower concentration was unfavorable for the formation of more silver microwires.Similar findings were also observed when the concentration of iron(Ⅱ) sulfate was decreased.The amount of citric acid also greatly affected the shape of the as-prepared particles.It was concluded that citric acid was the key role in the formation of silver microwires via the Oswald ripening mechanism.
基金supported by the Open Project Program of Hubei Key Laboratory of Animal Nutrition and Feed Science,Wuhan Polytechnic University(No.201808)Hubei Important Project of Technological Innovation(2018ABA094)~~
文摘To further improve the charge separation and photocatalytic activities of g-C3N4 and CdMoO4 under visible light irradiation,CdMoO4/g-C3N4 composites were rationally synthesized by a facile precipitation-calcination procedure.The crystal phases,morphologies,chemical compositions,textural structures,and optical properties of the as-prepared composites were characterized by the corresponding analytical techniques.The photocatalytic activities toward degradation of rhodamine B solution were evaluated under visible light irradiation.The results revealed that integrating CdMoO4 with g-C3N4 could remarkably improve the charge separation and photocatalytic activity,compared with those of pristine g-C3N4 and CdMoO4.This would be because the CdMoO4/g-C3N4 composites could facilitate the transfer and separation of the photoexcited electron-hole pairs,which was confirmed by electrochemical impedance spectroscopy,transient photocurrent responses,and photoluminescence measurements.Moreover,active species trapping experiments demonstrated that holes(h+)and superoxide radicals(?O2?)were the main active species during the photocatalytic reaction.A possible photocatalytic mechanism was proposed on the basis of the energy band structures determined by Mott-Schottky tests.This work would provide further insights into the rational fabrication of composites for organic contaminant removal.