快速扩展随机树(rapidly-exploring random tree,RRT)无人机航迹规划方法能够快速获得满足约束要求的可行航迹,但是无法获得接近最短航迹的较优航迹。针对航迹的最优性问题,提出了混合种群RRT无人机航迹规划方法。在基于环境势场的RRT...快速扩展随机树(rapidly-exploring random tree,RRT)无人机航迹规划方法能够快速获得满足约束要求的可行航迹,但是无法获得接近最短航迹的较优航迹。针对航迹的最优性问题,提出了混合种群RRT无人机航迹规划方法。在基于环境势场的RRT算法的基础上,设计了一种种群优化方法,通过引入自优化种群和协同优化种群改善航迹段,使算法同时具有局部和全局寻优能力。在得到航迹节点的基础上,采用B样条曲线的平滑方法生成曲率连续的可跟踪航迹。仿真结果表明,所提算法能够综合考虑无人机航程代价和雷达威胁代价,快速地收敛得到接近最优且满足无人机动力学约束的可行航迹,在不同环境下也能有满意的收敛效率。展开更多
文摘快速扩展随机树(rapidly-exploring random tree,RRT)无人机航迹规划方法能够快速获得满足约束要求的可行航迹,但是无法获得接近最短航迹的较优航迹。针对航迹的最优性问题,提出了混合种群RRT无人机航迹规划方法。在基于环境势场的RRT算法的基础上,设计了一种种群优化方法,通过引入自优化种群和协同优化种群改善航迹段,使算法同时具有局部和全局寻优能力。在得到航迹节点的基础上,采用B样条曲线的平滑方法生成曲率连续的可跟踪航迹。仿真结果表明,所提算法能够综合考虑无人机航程代价和雷达威胁代价,快速地收敛得到接近最优且满足无人机动力学约束的可行航迹,在不同环境下也能有满意的收敛效率。